

VARIABLE SPEED DRIVE
User's Manual

VARIABLE SPEED DRIVE

User's manual MT0015 Rev. A

POWER ELECTRONICS ESPAÑA

C/ Leonardo da Vinci, 24-26
PARQUE TECNOLOGICO
$46980 \cdot$ PATERNA •VALENCIA • ESPAÑA
Atención al Cliente. 902402070
Tel. +34 961366557 . Fax. +34961318201
www.power-electronics.com
power@power-electronics.com

IMPORTANT NOTES

RECEPTION

The SDRIVE 100 are carefully tested and perfectly packed before leaving the factory. In case of transport damage, notify it to transport agency and to POWER ELECTRONICS Tf. International +34 9613665 57, not later than 24hrs from delivery date.

UNPACKING

Make sure model and serial number of the variable speed drive are the same in the box, delivery note and unit.
Each variable speed drive is supplied with el SDRIVE 100 Technical manual in spanish, german and english.

SAFETY

It's electrcian's responsability to ensure the configuraction and installation of the SDRIVE 100 SERIES meets the requirements of any site specific, local and national electrical regulations.
The SDRIVE 100 Series operates from HIGH VOLTAGE, HIGH ENERGY ELECTRICAL SUPPLIES. Always isolate before servicing.
Service only by qualified personnel. For any question or enquiry please contact POWER ELECTRONICS Technical Departament or with your local distributor.
The SDRIVE100 Series contains static sensitive printed circuit boards. Use statisc safe procedures when handling these boards.

REVISIONS

INDEX

1. DESCRIPTION SDRIVE 100. 6
1.1. Product details.Appearance.
1.2. View without the front cover.
2. MOUNTING AND WIRING. 7
2.1. Installation precautions.
2.2. Wiring terminals.
2.3. Power terminals.
2.4. Specifications for control terminals.
2.5. Specifications for power terminals.
3. ELECTRICAL SPECIFICATIONS 10
4. DIMMENSIONS AND STANDARD RATINGS 12
5. PROGRAMMING KEYPAD 13
5.1. Keypad features.
5.2. Parameter groups in SDRIVE 100.
5.3. Moving between groups.
5.4. Moving to other groups from any codes other than the first code.
5.5. Parameter setting method.
5.6. Monitoring of operation status.
5.7. Monitoring of Motor rpm.
5.8. Parameter initialize.
6. FAULT MESSAGES. 18
6.1. Monitor fault.
6.2. Fault display and information.
7. FUNCTION LIST. 20
7.1. Drive group.
7.2. Function group 1.
7.3. Function group 2.
7.4. I / O group.
8. BASIC OPERATION 37
8.1. Frequency Setting via keypad \& operating via terminals.
8.2. Frequency Setting via potentiometer \& operating via terminals.
8.3. Frequency Setting via potentiometer \& operating via the Run key.
8.4. Multi-peed control via terminals P3, P4, P5.
8.5. PID for pressure control configuration.

1. DESCRIPTION SDRIVE 100

1.1. Product details.

1.2. View without the front cover.

2. MOUNTING AND WIRING

2.1 Installation precautions

Handle the inverter with care to prevent damage to the plastic components. Do not hold the inverter by the front cover. It may fall off.
IInstall the inverter in a place where it is immune to vibration ($5.9 \mathrm{~m} / \mathrm{s}^{2}$ or less).
IThe inverter is under great influence of ambient temperature. Install in a location where temperature is within the permissible range $\left(-10 \sim 50^{\circ} \mathrm{C}\right)$.

Ambient Temp Checking Location.
The inverter will be very hot during operation. Install it on a non-combustible surface.
Mount the inverter on a flat, vertical and level surface. Inverter orientation must be vertical (top up) for proper heat dissipation. Also leave sufficient clearances around the inverter.

Protect from moisture and direct sunlight.
Do not install the inverter in any environment where it is exposed to waterdrops, oil mist, dust, etc. Install the inverter in a clean place or inside a "totally enclosed" panel which does not accept any suspended matter.

2.2 WIRING TERMINALS

2.3 POWER TERMINALS

2.4 SPECIFICATIONS FOR CONTROL TERMINALS

Terminal	Terminal Description	Wire size	Torque (Nm)
P1/P2/P3 PA/P5	Multi-function input T/M P1-P5	22 AWG, $0.3 \mathrm{~mm}^{2}$	0.4
CM	Common TerminalforP1-P5,AM, P24	22 AWG. $0.3 \mathrm{~mm}^{2}$	04
VR	12V power supply for external potentiometer	$22 \mathrm{AWG}, 0.3 \mathrm{~mm}^{2}$	0.4
V/1	0-10V Analog Voltage innut	22 AW/G $0.3 \mathrm{~mm}^{2}$	04
1	O-20mA_Analog_Currentinnut	22 AWG $0.3 \mathrm{~mm}^{2}$	04
AM	Multi-function Analog_outnut	22 AWG . $3.3 \mathrm{~mm}^{2}$	04
M0	Multi-function onen collector outnut T/M	20 AW/G $0.5 \mathrm{~mm}^{2}$	04
EXTG	Ground T/M for MO	20 AWG. $0.5 \mathrm{~mm}^{2}$	0.4
P24	24V Power Supply for P1-P5	20 AWG. $0.5 \mathrm{~mm}^{2}$	0.4
30A		20 AWG. $0.5 \mathrm{~mm}^{2}$	0.4
30 B	Fault relay A/B contact output	20 AWG, $0.5 \mathrm{~mm}^{2}$	04
3 CC	30A BCommon	$20 \mathrm{AWGG} 0.5 \mathrm{~mm}^{2}$	04

NOTE: Tie the control wires more than 15 cm away from the control terminals. Otherwise, it interferes front cover reinstallation.
When you use external power supply for multi-function input terminal (P1~P5), apply voltage more than 12 V to activate.

2.5 SPECIFICATIONS FOR POWER TERMINALS

	SD1103	SD1105	SD1108	SD1112
Innut wire size	$2 \mathrm{~mm}{ }^{2}$	$2 \mathrm{~mm}{ }^{2}$	$3.5 \mathrm{~mm}^{2}$	$3.5 \mathrm{~mm}^{2}$
Outwire	$2 \mathrm{~mm}^{2}$	$2 \mathrm{~mm}^{2}$	$3.5 \mathrm{~mm}^{2}$	$3.5 \mathrm{~mm}^{2}$
Ground Wire	$2 \mathrm{~mm}^{2}$	$2 \mathrm{~mm}^{2}$	$3.5 \mathrm{~mm}^{2}$	$3.5 \mathrm{~mm}^{2}$
Terminallua	$2 \mathrm{~mm}^{2}$. 3.5 ¢	$2 \mathrm{~mm}^{2}$, 3.5 ¢	$3.5 \mathrm{~mm}^{2}, 3.5 \phi$	$3.5 \mathrm{~mm}^{2}$, 3.5 ¢
TighteningToraue	$13 \mathrm{kgf} / \mathrm{cm}$	$13 \mathrm{kgf} / \mathrm{cm}$	$15 \mathrm{kgf} / \mathrm{cm}$	$15 \mathrm{~kg} / \mathrm{m}$

3. ELECTRICAL SPECIFICATIONS

INPUT

Voltage supply
Input frequency
Input power factor
Momentary power loss

OUTPUT

Motor output voltage
Current overload capacity
Frequency range
Efficiency (full load)
Modulation method
Modulation frequency

ENVIRONMENT CONDITIONS

Degree of protection
Operation temperature
Storage temperature
Relative humidity
Altitude
Altitude loss factor (>1000m)
Vibration
Application site

200 to $230 \mathrm{~V} / \mathrm{AC} \pm 10$ single phase
0,4KW - 2,2KW.
$50-60 \mathrm{~Hz} . \pm 5 \%$
$>0,98$ (over fundamental frequency)
$<15 \mathrm{mS}$ (continuous operation).
$>15 \mathrm{mS}$ (autoreset).
0 to input voltage
150% during 60 sec .
200% during 1 sec .
0 to $\pm 400 \mathrm{~Hz}$
> 98\%
Vector space modulation
15 kHz maximum

IP20
$-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
< 90%, no condensation
1000m
-1% per 100m; max. 3000m.
Max. $5.9 \mathrm{~m} / \mathrm{sec} 2$ (0.6 G)
Protected from corrosive gas, combustible gas, oil mist or dust.

PROTECTIONS SDRIVE 100

Drive trip
Over-voltage.
Under-voltage.
Over-current.
Ground fault current detection.
Over-temperature of inverter and motor.
Output phase open.
Overload.
Communication error.
Loss of frequency command.
H / W fault.
Alarm condition
Stall prevention
Overload

CONTROL

Control method
Analogue inputs
Digital inputs
Analogue outputs
Digital output
Relay output
Communications port
Operation features
Standards
V / Hz, Vector sensorless
1 input $0-10 \mathrm{Vcc}$ and 1 input $0-20 \mathrm{~mA}$.
5 multifunction inputs
1 output 0-10V
1 multifunction output, open collector.
1 fault relay 2 A 30 Vdc 0.5 A 125 Vac
RS485 and Modbus RTU protocol (as accesory)
PID control, 3-wire, up-down operation.
CE, ISO9001and ISO14000

4. DIMMENSIONS AND STANDARD RATINGS

DT0079A

REFERENCE	STANDARD RATINGS				DIMENSIONS			WEIGHT
	I (A)	kW	HP	V	W	H	D	(Kg.)
SD1103	3	0,4	0,5	$230 I I$	79	143	143	0,87
SD1103F	3	0,4	0,5	$230 I I$	79	143	143	0,95
SD1105	5	0,75	1	$230 I I$	79	143	143	0,89
SD1105F	5	0,75	1	$230 I I$	79	143	143	0,97
SD1108	8	1,5	2	$230 I I$	156	143	143	1,79
SD1108F	8	1,5	2	$230 I I$	156	143	143	1,94
SD1112	12	2	3	$230 I I$	156	143	143	1,85
SD1112F	12	2	3	$230 I I$	156	143	143	2

5. PROGRAMMING KEYPAD

5.1 KEYPAD FEATURES

Keys		
RUN		Usedtogive aruncommand
STOP/RST		STOP: Stop the operation_RST: Reset faults
4-Way button		Programming keys:(Up/Down/Left/Right arrow and Prog/Ent keys).
-	Up	Used to scroll through codes or increase parameter value
V	Nown	للlsed to ccrall through codecor decrease parameter value
4	Left	Used to jump to other parameter groups or move a cursor to the left to change the narameter
-	Right	Used to jump to other parameter groups or move a cursor to the righ to change the parameter
\bigcirc	Prog/Ent Key	لllsed to cet the parameter value or save the changed parameter value
Poton finmotor		Used to change the value of run freauency

5.2 PARAMETER GROUPS IN SDRIVE 100

There are 4 different parameter groups in SD100 series as shown below.

DT0099A

Drive group	Basic parameters necessary for the inverter to run. Parameters such as Target frequency Accel/Decel time are settable
Functiongroun-1	Basic function parameters to adiust output frequency and voltage
Function group 2	Advanced function parameters to set parameters for such as PID Oneration and second motor oneration
I/ O Group	Parameters necessary to make up a sequence using Multi-function innut/outnut terminal

5.3 MOVING BETWEEN GROUPS

DTO100A

5.4 MOVING TO OTHER GROUPS FROM ANY CODES OTHER THAN THE FIRST CODE

5.5 PARAMETER SETTING METHOD

Changing parameter value in Drive group.

When changing ACC time from 50 secto 160		
1	0 n	
2	ACC	- ACC [Accel time] is displayed. - Press the Prod/Ent key (O) once
3	5.0	-. Preset value is 5.0 , and the cursor is in the digit $\mathbf{0}$. - Prese the left (key one to move the cursor to the left
4	5.0	-. The digit 5 in 50 is active. Then press the Up $(\mathbf{\Delta})$ key once.
5	6.0	-. The value is increased to 6.0 -.Press the Left (\backslash) key to move the cursor to the left.
6	06.0	-0.60 is displayed. The first 0 in 0.60 is active. - Press the Up ($\boldsymbol{\Delta}$) key once.
7	16.0	-. 16.0 is set. -. Press the Prog/Ent (-) key once. -16.0 is blinking. - Precs the Prag/Ent (key once again to return to the parameter name
8	ACC	$\triangle C C$ is displayed Accoltime is changed from 50 nto 160 cec
In step 7, pressing the Left (/ $^{\text {a }}$ (Right $($ key while 16.0 is blinking will disable the setting.		

5.6 MONITORING OF OPERATION STATUS

5.7 MONITORING OF MOTOR RPM.

5.8 PARAMETER INITIALIZE

6. FAULT MESSAGES

6.1 MONITOR FAULTS

6.2 FAULT DISPLAY AND INFORMATION

Display	Fault	Description
Oct	Over current	The inverter turns off its output when the output current of the inverter flows more than 200% of the inverter rated current
Oft	Ground fault current	The inverter turns off its output when a ground fault occurs and the ground fault current is more than the intornal cetting value of the invertor
IOL	Inverter Overload	The inverter turns off its output when the output current of the inverter flows more than the rated level (150% for 1 minute)
OL t	Overload trip	The inverter turns off its output if the output current of the inverter flows at 150% of the inverter rated current for more than the current limit time (1 min).

Display	Fault	Description
OH t	Heat sink overheat	The inverter turns off its output if the heat sink overheats due to a damaged cooling fan or an alien substance in the cooling fan by detecting the temperature of the heat sink
COL	DC link capacitor overload	The inverter turns off its output when it is time to replace the old DC link capacitor to a new one.
Pot	Output Phase loss	The inverter turns off its output when the one or more of the output (U, V, W) phase is open. The inverter detects the output current to check the nhaselosen the outnut
Out	Over voltage	The inverter turns off its output if the DC voltage of the main circuit increases higher than 400 V when the motor decelerates. This fault can also occur due to a surge voltage generated at the power supply system.
Out	Low voltage	The inverter turns off its output if the DC voltage is below 200V because insufficient torque or overheating of the motor can occur when the input voltage of the inverter drons
EtH	Electronic Thermal	The internal electronic thermal of the inverter determines the overheating of the motor. If the motor is overloaded the inverter turns off the output. The inverter cannot protect the motor when driving a motor having more than 4 noles or multi motors
EEP	Parameter save error	This fault message is displayed when user-setting parameters fails to be entered into memory
HWE	Inverter hardwarefault	This fault message is displayed when an error occurs in the control circuitry of the invertor
Err	Communication Error	This fault message is displayed when the inverter cannot communicate with the keynad
FAn	Cooling fan fault	This fault message is displayed when a fault condition occurs in the inverter cooding fan.
		Used for the emergency stop of the inverter. The inverter instantly turns off the output when the EST terminal is turned on.
ESt	Instant cut off	Caution: The inverter starts to regular operation when turning off the $B X$ terminal while FX or RX terminal is ON
EtA	External fault A contact input	When multi-fun ction input terminal ($120-124$) is set to 18 \{External fault signal input: A (Normal Open Contact)\}, the inverter turns off the output.
EtB	External fault B contact input	When multi-function input terminal (I20-124) is set to 18 \{External fault signalinput. B(Normal Close Contact) 3, the inverter turns مff the output.
L	Operating method when the frequency command is -	When inverter operation is set via Analog input ($0-10 \mathrm{~V}$ or $0-20 \mathrm{~mA}$ input) or option (RS485) and no signal is applied, operation is done according to the method set in 162 (Operating method when the frequency reference is lost).

7. FUNCTION LIST

7.1 DRIVE GROUP

$\begin{gathered} \hline \text { LED } \\ \text { display } \end{gathered}$	Parameter name	$\begin{array}{\|c\|} \hline \text { Min/Max } \\ \text { range } \\ \hline \end{array}$		Description	Factory defaults	Adjustable during run
0.0	Frequency command	$\begin{aligned} & 0 / 400 \\ & {[\mathrm{~Hz}]} \end{aligned}$	This parameter sets the frequency that the inverter is commanded to output. During Stop: Frequency Command During Run: Output Frequency During Multi-step operation: Multi-step frequency. It cannot be set greater than F21- [Max freauencyl.		0.0	0
ACC	Accel time	$\begin{array}{\|c\|} \hline 0 / 6000 \\ {[8]} \\ \hline \end{array}$	During MultiAccel/Decel operation, this naramoter serves as Accol/Decel timen		50	0
dEC	Decel time.				100	0
Drv	Drive mode (Run/Stop mode)	0/3	$\begin{array}{l\|l} \text { Run/Stop v } \\ \text { keypad } \end{array}$	via Run/Stop key on the	11	X
			Run/Stop via control terminal	FX: Motor forward run RX: Motor reversernn FX: Run/Stop enable RX: Motor reverse rotation		
			Operation via Communication Ontion			
Frq	Frequency mode	0/8	Digital	Setting via Keypad 1	0	X
				Setting via Keynad 2		
				Setting via potentiometer on the keypad (VO). Setting via V1 terminal		
				Setting via لIterminal		
				Setting via potentiometer on the keynad + It torminal		
				Setting via V1 + I terminal		
				Setting via potentiometer on the keypad +V 1 terminal		
				Modbus-RTU Communication		
St1	Multi-Step frequency 1	$\begin{aligned} & 0 / 400 \\ & {[\mathrm{~Hz}]} \end{aligned}$	This parameter sets Multi-Step frequency 1 during Multisten neneration		10.0	0
St2	Multi-Step frequency 2		This parameter sets Multi-Step frequency 2 during Multisten operation.		20.0	0
St3	Multi-Step freauency 3		This parameter sets Multi-Step frequency 3 during Multi-sten operation		30.0	0
CUr	Outputcurrent		This parameter displays the output current to the motor		-	-
rPM	Motor RPM		This parameter displays the number of Motor RPM		-	-
dCL	Inverter DC link voltage		This parameter displays DC link voltage inside the inverter.		-	-

$\begin{gathered} \text { LED } \\ \text { display } \end{gathered}$	Parameter name	Min/Max range		Description	Factory defaults	Adjustable during run
vOL	User display select		This parameter displays the item selected at H 73 - [Monitoring item selectl		vOL	-
			vO	Output voltage		
			POr	Output power		
			tOr	Torque		
nOn	Fault Display		This parameter displays the types of faults, frequency and operating status at the time of the fault		-	-
drC	Direction of motor rotation select	F/r	This parameter sets the direction of motor rotation when drv - [Drive mode] is set to either 0 or 1		F	0
				Forward		
			r	Reverse		

7.2 FUNCTION GROUP 1

$\begin{array}{r} \hline \text { LED } \\ \text { display } \end{array}$	Parameter name	$\begin{array}{\|c} \hline \text { Min/Max } \\ \text { range } \end{array}$	Description	Factory defaults	Adjustable during run
F 0	Jump code	0/60	This parameter sets the parameter code number to jump.	1	0
F 1	Forward/ Reverse run disable]	0/2	0 Ewid and rev run enable	0	X
			Enoward rundisable		
			2 Reverse rundisable		
E2	Accol nattern	0/1	0 - ${ }^{\text {Linear }}$	0	X
E 3	Decel nattern		S-curve		
F 4	Stop mode select	0/2	0 Decelerate to ston	0	X
			Stop via DC brake		
			Eree runtoston		
F 8	DC Brake start frequency	0/60 [Hz]	This parameter sets DC brake start frequency. It cannot be set below F23[Startfrequency].	5.0	X
F 9	DC Brake waittime	0/60 [s]	When DC brake frequency is reached, the inverter holds the output for the setting time before starting مe hrake	1.0	X
F10	DC B rake voltage	$\begin{gathered} 0 / 200 \\ {[\%]} \end{gathered}$	This parameter sets the amount of DC voltage applied to a motor. It is set in percent of H 33 [Motor rated currentl]	50	X

$\begin{gathered} \text { LED } \\ \text { display } \end{gathered}$	Parameter name	Min/Max range	Description	Factory defaults	Adjustable during run
F11	DC Brake time	0/60 [s]	This parameter sets the time taken to apply DC current to a motor while motor is at a stop	1.0	X
F12	DC Brake start voltage	$\begin{gathered} 0 / 200 \\ {[\%]} \end{gathered}$	This parameter sets the amount of DC voltage before a motor starts to run. It is set in percent of H33 - -Mator rated culurentl	50	X
F13	DC Brake start time	0/60 [s]	DC voltage is applied to the motor for DC Brake start time before motoraccelerates.	0	X
F14	Time for magnetizing a motor	0/60 [s]	This parameter applies the current to a motor for the set time before motor accelerates during Sensorless vector control	1.0	X
F20	Jog frequency	$\begin{gathered} 0 / 400 \\ {[H z]} \end{gathered}$	This parameter sets the frequency for Jog operation. It cannot be set above F21[Max frequency].	10.0	0
F21	Max frequency	$\begin{aligned} & 40 / 400 \text { * } \\ & {[\mathrm{Hz}]} \end{aligned}$	This parameter sets the highest frequency the inverter can output. It is frequency reference for Accel/Decel (See H70) If H40 is set to 3(Sensorless vector), it can be settable up to 300 Hz *	60.0	X
			Caution : Any frequency cannot be set above Max frequency		
F22	Base frequency	$\begin{aligned} & 30 / 400 \\ & {[\mathrm{~Hz}]} \end{aligned}$	The inverter outputs its rated voltage to the motor at this frequency (see motor nameplate). In case of using a 50 Hz motor, set this to 50 Hz	60.0	X
F23	Start frequency	$\begin{aligned} & 0 / 10 \\ & {[H z]} \\ & \hline \end{aligned}$	The inverter starts to output its voltage at this frequency. 1 t is the frequency low limit.	0.5	X
F24	Frequency high/low limitselect	0/1	This parameter sets high and low limit of run frequency	0	X

$\begin{array}{\|c\|} \hline \text { LED } \\ \text { display } \\ \hline \end{array}$	Parameter name	$\begin{gathered} \hline \text { Min/Max } \\ \text { range } \\ \hline \end{gathered}$	Description	Factory defaults	Adjustable during run
F25	Frequency high limit	$\begin{gathered} 0 / 400 \\ {[\mathrm{~Hz}]} \end{gathered}$	This parameter sets high limit of the run frequency. It cannot be set above F21- [Max frequencyl	60.0	X
F26	Frequency low limit	$\begin{gathered} 0 / 400 \\ {[\mathrm{~Hz}]} \end{gathered}$	This parameter sets low limit of the run frequency. It cannot be set above F25- [Frequency high limit] and below F23 - [Start frequencyl.	0.5	X
	Torque Boost		م- Manualtorquehonst		
F27	select	$0 / 1$	1 Autntorgue honst	0	X
F28	Torque boost in forward direction	0/15 [\%]	This parameter sets the amount of torque boost applied to a motor during forward run. \qquad	5	X
F29	Torque boost in reverse direction	0/15 [\%]	This parameter sets the amount of torque boost applied to a motor during reverse run. It is set as a percent of Max output voltage	5	X
F30	V/F pattern	$0 / 2$	0 - ${ }^{\text {inear }}$	0	X
			1 Square		
			2 User V/F		
F31	User V/F frequency 1	0/400 [Hz]	This parameter is active when F30[V/F pattern] is set to 2 \{User V/F\}. It cannot be set above F21-[Max frequency]. The value of voltage is set in percent of H70 - [Motor rated voltage]. The values of the lowernumbered parameters cannot be set above those of higher-numbered.	15.0	X
F32	User V/F voltage 1	0/100 [\%]		25	X
F33	User V/F frequency 2	0/400 [Hz]		30.0	X
F34	User V/F voltage 2	0/100 [\%]		50	X
F35	User V/F freauency 3	0/400 [Hz]		45.0	X
F36	User V/F voltage 3	0/100 [\%]		75	X
F37	User V/F frequency 4	0/400 [Hz]		60.0	X
F38	User V/F voltage 4	0/100 [\%]		100	X

$\begin{array}{\|c\|} \hline \text { LED } \\ \text { display } \end{array}$	Parameter name	Min/Max range	Description	Factory defaults	Adjustable during run
F39	Output voltage adjustment	$\begin{gathered} \text { 40/110 } \\ {[\%]} \end{gathered}$	This parameter adjusts the amount of output voltage. The set value is the percentage of input valtage	100	X
F40	Energy-saving level	0/30 [\%]	This parameter decreases output voltage according to load status	0	0
F50	Electronic thermal select	0/1	This parameter is activated when the motor is overheated (timeinverse).	0	0
F51	Electronic thermal level for 1 minute	$\begin{gathered} \text { 50/200 } \\ {[\%]} \end{gathered}$	This parameter sets max current capable of flowing to the motor continuously for 1 minute. The set value is the percentage of H 33 [Motor rated current]. It cannot be set below F52-[Electronic thermallevel for continunurl	150	0
F52	Electronic themal level for continuous		This parameter sets the amount of current to keep the motor running continuously. It cannot be set higher than F51 [Electronic thermallevel for 1 minute].	100	0
F53	Motor cooling method	0/1	0 Standard motor having cooling fan directly connected to the shaft 1 A motor using a separate motor to power a cooling fan.	0	0
F54	Overload warning level	$\begin{gathered} 30 / 150 \\ {[\%]} \end{gathered}$	This parameter sets the amount of current to issue an alarm signal at a relay or multi function output terminal (see 154, I55). The set value is the percentage of H 33 [Motor rated current].	150	0
F55	Overload warning time	0/30 [s]	This parameter issues an alarm signal when the current greater than F54[Overload warning level] flows to the motor for E55-[Overload waming time].	10	0
F56	Overload trip select	0/1	This parameter turns off the inverter oultnut when motor is nuerloaded	1	0
F57	Overload trip level	$\begin{gathered} \text { 30/200 } \\ {[\%]} \end{gathered}$	This parameter sets the amount of overload current. The value is the percentage of $\mathrm{H} 33-$ [Motorrated cuurrent]	180	0
F58	Overload trip time	0/60 [s]	This parameter turns off the inverter output when the F57-[Overload trip level] of current flows to the motor for F58-[Overload trip time].	60	0

| $\begin{array}{c}\text { LED } \\ \text { display }\end{array}$ | Parameter name | $\begin{array}{c}\text { Min/Max } \\ \text { range }\end{array}$ | | $\begin{array}{c}\text { Description }\end{array}$ | | $\begin{array}{c}\text { Factory } \\ \text { defaults }\end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}Adjustable

during run\end{array}\right]\)

7.3 FUNCTION GROUP 2

$\begin{array}{\|c} \hline \text { LED } \\ \text { display } \end{array}$	$\begin{gathered} \text { Parameter } \\ \text { name } \\ \hline \end{gathered}$	Min/Max range	Description	Factory defaults	Adjustable during run
H 0	Jump code	1/95	This parameter sets the code number jump.	1	0
H1	Fault history 1		This parameter stores information on the types of faults, the frequency, the current and the Accel/Decel condition at the time of fault. The last fault is automatically stored in the H 1 - [Eault history 1$]$	n 0 n	
H2	Eaulthistory 2			nคn	
H_{3}	Faulthistory 3	-		n 0 n	-
H4	Faulthistory 4	-		n 0 n	
H 5	Fault history 5	-		nOn	-
H 6	Reset fault history	0/1	This parameter clears the fault history savedin H $1-5$	0	0
H 7	Dwell frequency	$\begin{gathered} \mathrm{F} 23 / 400 \\ {[\mathrm{~Hz}]} \end{gathered}$	When run frequency is issued, motor starts to accelerate after dwell frequency is applied to the motor during H8- [Dwell time]. [Dw ell frequency] can be set within the range of F21- [Max frequency] and F23[Start frequency].	5.0	X

$\begin{array}{\|c\|} \hline \text { LED } \\ \text { display } \end{array}$	Parameter name	Min/Max range	Description	Factory defaults	Adjustable during run
H 8	Dwell time	0/10 [s]	This parameter sets the time for dwell operation.	0.0	X
H10	Skip frequency select	0/1	This parameter sets the frequency range to skip to prevent undesirable resonance and vibration on the structure of the machine.	0	X
H11	Skip frequency low limit1	$\begin{gathered} 0 / 400 \\ {[\mathrm{~Hz}]} \end{gathered}$	Run frequency cannot be set within the range of H 11 thru H 16 . The frequency values of the low numbered parameters cannot be set above those of the high numbered ones.	10.0	X
H12	Skip frequency high limit 1			15.0	X
H13	Skip frequency low limit2			20.0	X
H14	Skip frequency high limit?			25.0	X
H15	Skip frequency low limit3			30.0	X
H16	Skip frequency hinh limit 3			35.0	X
H17	S-Curve accel/decel start side	1/100 [\%]	Set the speed reference value to form a curve at the start during accel/decel. If it is set higher, linear zone gets smaller.	40	X
H18	S-Curve accel/decel end side	1/100 [\%]	Set the speed reference value to form ac urve at the end during accel/decel. If it is set higher, linear zone gets smaller.	40	X
H19	Output phase loss protection select	0/1	Inverter turns off the output when the phase of the inverter output (U, V, W) is not nronerly connected	0	0
H2O	Power On Start select	0/1	This parameter is activated when drv is set to 1 or 2 (Run/Stop via Control terminal). Motor starts acceleration after AC power is applied while FX or RX terminalis ON	0	0
H21	Restart after fault reset		This parameter is active when drv is set to 1 or 2 (Run/Stop via Control terminal). Motor accelerates after the fault condition is reset while the FX or RX terminal is ON .		

$\begin{aligned} & \text { LED } \\ & \text { display } \end{aligned}$	Parameter name	Min/Max range	Description					Factory defaults	Adjustable during run
H22		0/15	This poss volta	parameter ible fault w ge to the r	is active when the in unning mo	to prevent inerter outp tor	any puts its		
				1. H 2 O Power On start	2.Restar t after instant power failure	3.Operation after fault occurred	4.Normal accelera tion	0	0
				Bit 3	Bit2	Bit 1	Bit 0		
			0	-	-	-	-		
			1	-	-	-	\checkmark		
			2	-	-	\checkmark			
			3	-		\checkmark	\checkmark		
			4		\checkmark				
			5		\checkmark		\checkmark		
			6	-	\checkmark	\checkmark			
			7	-	\checkmark	\checkmark	\checkmark		
			8	\checkmark	-	-	-		
			9	\checkmark			\checkmark		
			10	\checkmark		\checkmark			
			11	\checkmark		\checkmark	\checkmark		
			12	\checkmark	\checkmark				
			13	\checkmark	\checkmark	-	\checkmark		
			14	\checkmark	\checkmark	\checkmark	-		
			15	\checkmark	\checkmark	\checkmark	\checkmark		
H23	Current level during Speed search	$\begin{gathered} \text { 80/200 } \\ {[\%]} \end{gathered}$	This parameter limits the amount of current during speed search. The set value is the percentage of the H33[Motor rated currentl.					100	0
H24	P gain during Speed search	0/9999	It is the Proportional gain used for Speed Search PI controller.					100	0
H25	gain during speed search	0/9999	It is the Integral gain used for Speed search PI controller.					1000	0
H26	Number of Auto Restart try	0/10	This parameter sets the number of restart tries after a fault occurs. Auto Restart is deactivated if the fault outnumbers the restart tries. This function is active when [drv] is set to 1 or 2 \{Run/Stop via control terminal\}. Deactivated during active protection function (OHT, LVT, EXT, HWT etc.)					0	0

$\begin{gathered} \text { LED } \\ \text { display } \end{gathered}$	Parameter name	Min／Max range		Description	Factory defaults	Adjustable during run
H39	Carrier frequency select	$\begin{array}{r} 1 / 15 \\ {[\mathrm{kHz}]} \end{array}$	－This parameter affects the audible sound of the motor，noise emission from the inverter，inverter temp，and leakage current．If the value is set higher，the inverter sound is quieter but the noise from the inverter and leakage current will become greater．		3	0
H40	Control mode select	0／3	0	\｛V／olts／frequency Control\}	0	X
			1	\｛Slin＿eomnensation control\}		
			2	\｛PID Feedhack control\}		
			3	\｛Sensorless vector control\}		
H41	Auto tuning	0／1	If this parameter is set to 1 ，it automati－ cally measures parameters of the H42 and H 43		0	X
H42	［Stator resistance （Rs）］	$0 / 5.0\left[^{\Omega}\right.$ ］	This is the value of the motor stator resistance．		－	X
H44	［Leakage inductance ${ }_{(1)}{ }^{\sigma}$	$\begin{gathered} 0 / 300.0 \\ {[\mathrm{mH}]} \\ \hline \end{gathered}$	This is leakage inductance of the stator and rotor of the motor．		－	X
H45	Sensorless P gain	0／32767	P gain for Sensorless control		1000	0
H46	Sensorless I \qquad gain		I gain for Sensorless control		100	0
	PID Feedback salect	0／1	\bigcirc	Terminal innut $^{\text {（ }}$（ $\left.\sim 20 \mathrm{~mA}\right)$		
H50			1	Terminal V1 input（0～ 10 V ）	0	X
H51	［P gain for PID controller］	$\begin{gathered} 0 / 999.9 \\ {[\%]} \\ \hline \end{gathered}$	This parameter sets the gains for the PID controller．		300.0	0
H52	［Integral time for PID controller （laain）	$\begin{gathered} 0.1 / 32.0 \\ {[\mathrm{sec}]} \end{gathered}$			1.0	0
H53	Differential time for PID controller （D⿴囗⿰丨丨⿱一𫝀口	$\begin{gathered} 0.0 / 30.0 \\ {[\mathrm{sec}]} \end{gathered}$			0.0	0
H54	F gain for PID controller	$\begin{gathered} \text { 0/999.9 } \\ {[\%]} \\ \hline \end{gathered}$		is the Feed forward gain for the PID oller．	0.0	0

$\begin{gathered} \text { LED } \\ \text { display } \end{gathered}$	Parameter name	Min/Max range		Description	Factory defaults	Adjustable during run
H70	Frequency Reference for Accel/Decel	0/1	0	The Accel/Decel time is the time that takes to reach the F21 [Max frequency] from 0 Hz	0	X
			1	The Accel/Decel time is the time that takes to reach a target frequency from the run frequency		
H71	Accel/Decel time scale	0/2	\bigcirc	Settable unit-0 01 secand	1	0
			1	Settable unit: 011 second		
			2	Settable unit-1 secand		
H72	Power on display	0/13	This parameter selects the parameter to be displayed on the keypad when the input power is first applied.		0	0
			\bigcirc	Erequency command		
			1	Accoltime		
			2	Decal time		
			3	Drivemade		
			4	Frequency mode		
			5	Multi-Step frequency 1		
			6	Multi-Sten frequency 2		
			7	Multi-Sten frequency 3		
			8	Outnutaurrent		
			9	Mator rom		
			10	Inverter DC link voltage		
			11	User display select		
			12	Eaultdisplay		
			13	Direction of motor rotation select		
H73	Monitoring item select	0/2	One of the following can be monitored viavol_[llser display select]		0	0
			\bigcirc	Outputvaltage[/]		
			1	Outnut nower [kW]		
			2	Torque [kaf m]		
H74	Gain for Motor rpm display	$\begin{gathered} 1 / 1000 \\ {[\%]} \end{gathered}$		$P M=\left(\frac{120 \times f}{H 31}\right) \times \frac{H 74}{100}$ parameter is used to change the r speed display to rotating speed) or mechanical speed (m / mi).		
H79	Software version	0/10.0	This	parameter displays the inverter ware version.	1.0	X

$\begin{gathered} \hline \text { LED } \\ \text { display } \end{gathered}$	Parameter name	$\begin{gathered} \hline \text { Min/Max } \\ \text { range } \\ \hline \end{gathered}$		Description	Factory defaults	Adjustable during run
H81	Software version	0/6000 [s]	This parameter is active when the selected terminal is ON after $\mathrm{I} 20-\mathrm{I} 24$ is set to $12\left\{2^{\text {ma }}\right.$ motor select $\}$.		5.0	0
H82	$2^{\text {nd }}$ motor Accel time				10.0	0
H83	$2^{\text {nd }}$ motor Decel time	$\begin{gathered} 30 / 400 \\ {[\mathrm{~Hz}]} \end{gathered}$			60.0	X
H84	2nd motor base frequency	0/2			0	X
H85	$\begin{aligned} & 2^{2^{\text {nd }} \text { motor V/F }} \\ & \text { nattern. } \end{aligned}$	0/15 [\%]			5	X
H86	$2^{\text {nd }}$ motor forward torquehnost				5	X
H87	$2^{\text {nd }}$ motor reverse torqueboost	$\begin{gathered} 30 / 150 \\ {[\%]} \\ \hline \end{gathered}$			150	X
H88	$2^{\text {nd }}$ motor stal prevention level	$\begin{gathered} \text { 50/200 } \\ {[\%]} \end{gathered}$			150	0
H89	$2^{\text {nd }}$ motor Electronic thermal level for 1 min				100	0
H90	$2^{\text {nd }}$ motor Electronic thermal level for continuous	$\begin{gathered} 0.1 / 20 \\ {[\mathrm{~A}]} \end{gathered}$			1.8	X
H93	Parameter initialize	0/5	This paramete parameters b	er is used to initialize back to the factory default values.	0	X
			0			
			$\begin{array}{\|l\|l\|} \hline 1 & \text { All parar } \\ \text { to factor } \\ \hline \end{array}$	ameter groups are initialized ry defanlt value		
			2 Only Dr	rivegroupis initialized.		
			3 Only Fu	unction group 1 is initialized.		
			4 Only Fu	unction groun 2 is initialized.		
H94	Password register	0/FFF	Password fo	or H95-[Parameter lock].	0	0
H95	Parameter lock	0/FFF	This parameter is able to lock or unlock parameters by typing password registered in H 94		0	0
			UL(Unlock)	Parameter change enable		
			((1ack)	Paramoter changedisable		

7.4 I/O GROUP

$\begin{gathered} \text { LED } \\ \text { display } \end{gathered}$	Parameter name	Min/Max range	Description	Factory defaults	Adjustable during run
10	Jump code	0/63	This parameter sets the code number to iump	1	0
11	Filter time constant for Vo innut	0/9999	This is used to adjust the analog voltage input signal via keypad potentiometer.	10	0
12	VO input Min voltace	$\begin{gathered} 0 / 10 \\ \mathrm{M} \end{gathered}$	Set the minimum voltage of the V0 input.	0	0
13	Frequency corresponding to 12	$\begin{gathered} 0 / 400 \\ {[\mathrm{~Hz}]} \end{gathered}$	Set the inverter output minimum frequency at minimum voltage of the V 0 input.	0.0	0
14	V0 input Max voltage	$\begin{gathered} 0 / 10 \\ \mathrm{M} \end{gathered}$	Set the maximum voltage of the V0 input.	10	0
15	Frequency corresponding to 14	$0 / 400$ $[\mathrm{Hz}]$	Set the inverter output maximum frequency at maximum voltage of the V0 innut	60.0	0
16	Filter time constant for V1 innut	0/9999	Set the input section's internal filter constant for V1 input.	10	0
17	V1 input Min vultace	$\begin{gathered} 0 / 10 \\ \hline \end{gathered}$	Set the minimum voltage of the V1 input.	0	0
18	Frequency corresponding to 17	$\begin{aligned} & 0 / 400 \\ & {[\mathrm{~Hz}]} \\ & \hline \end{aligned}$	Set the inverter output minimum frequency at minimum voltage of the V 1 input.	0.0	0
19	V1 input max vultace	$\begin{gathered} 0 / 10 \\ \hline \end{gathered}$	Set the maximum voltage of the V1 input.	10	0
110	Frequency corresponding to 19	$\begin{aligned} & 0 / 400 \\ & {[\mathrm{~Hz}]} \\ & \hline \end{aligned}$	Set the inverter output maximum frequency at maximum voltage of the V 1 innut	60.0	0
111	Filter time constant for I innut	0/9999	Set the input section's internal filter constant for I input.	10	0
112	I input minimum current	$\begin{aligned} & 0 / 20 \\ & {[\mathrm{~mA}]} \end{aligned}$	Set the Minimum Current of I input.	4	0
113	Frequency corresponding to 112	$\begin{gathered} 0 / 400 \\ {[\mathrm{~Hz}]} \\ \hline \end{gathered}$	Set the inverter output minimum frequency at minimum current of I input.	0.0	0
114	I input max current	$\begin{gathered} 0 / 20 \\ {[\mathrm{mAl}]} \\ \hline \end{gathered}$	Set the Maximum Current of I input.	20	0
115	Frequency corresponding to 114	$\begin{gathered} 0 / 400 \\ {[\mathrm{~Hz}]} \\ \hline \end{gathered}$	Set the inverter output maximum frequency at maximum current of I input.	60.0	0

$\begin{array}{\|c\|} \hline \text { LED } \\ \text { display } \end{array}$	Parameter name	Min/Max range	Description	Factory defaults	Adjustable during run
127	Filtering time constant for Multi-function Input terminal	2/50	If the value is set higher, the response of the Input terminal is getting slower.	15	0
130	Multi-Step frequency 1	$\begin{aligned} & 0 / 400 \\ & {[\mathrm{~Hz}]} \end{aligned}$	It cannot be set greater than F21-[Max frequency].	30.0	0
131	Multi-Step frequency 5			25.0	0
132	Multi-Step freauency 6			20.0	0
133	Multi-Step freauency 7			15.0	0
134	Multi-Accel time 1	$\begin{gathered} \text { 0/6000 } \\ {[s]} \end{gathered}$		3.0	0
135	Multi-Decel time 1			3.0	
136	Multi-Accel time 2			4.0	
137	Multi-Decel time 2			4.0	
138	Multi-Accel time 3			5.0	
139	Multi-Decel time 3			5.0	
140	Multi-Accel			6.0	
141	Multi-Decel time 4			6.0	
142	Multi-Accel			7.0	
143	Multi-Decel time 5			7.0	
144	Multi-Accel time 6			8.0	
145	Multi-Decel time 6			8.0	
146	Multi-Accel time 7			9.0	
147	Multi-Decel time 7			9.0	

$\begin{gathered} \text { LED } \\ \text { display } \end{gathered}$	Parameter name	Min/Max range	Description				Factory defaults	Adjustable during run
156	Fault relay output	07	3		\checkmark	\checkmark	2	0
			4	\checkmark				
			5	\checkmark		\checkmark		
			6	\checkmark				
			7	\checkmark		\checkmark		
160	Tnverter station number	1/32	This parameter is set when the inverter uses RS485 communication option.				1	0
161	Baud rate	0/4	Select the Baud rate of the RS485				3	0
			0					
			1					
			2	480				
			3	960				
			4					
162	Drive mode select after loss of frequency command	0/2	It is used when frequency command is given via V1 and I terminal or communication ontion				0	0
			0	Con	s			
			1	Fre	sto	toston)		
			2					
163	Wait time after loss of frequency command	$\begin{aligned} & 0.1 / 12 \\ & {[\mathrm{sec}]} \end{aligned}$	This is the time inverter determines whether there is the input frequency command or not. If there is no frequency command input during this time, inverter starts operation via the mode selected at 162				1.0	-

8. BASIC OPERATION

Caution : The following instructions are given based on the fact that all parameters are set to factory defaults. Results could be different if parameter values are changed. In this case, initialize parameter values (see page 10-17) back to factory defaults and follow the instructions below.

8.1 FREQUENCY SETTING VIA KEYPAD \& OPERATING VIA TERMINALS.

1	0.0	- Apply AC input power to the inverter.		
2	0.0	-. When 0.0 appears, press the Prog/Ent () key once.		
3	00.0	-. The second digit in 0.0 is lit as shown left. - Press the Left (key twice.		
4	10.0	-00.0 is displayed and the first 0 is lit. - Press the Up (key.		
5	10.0	-10.0 is set. Press the Prog/Ent $\left({ }^{\bullet}\right)$ key once. - 10.0 is blinking. Press the Prog/Ent (key once.		
6	:10.0	-. Run frequency is set to 10.0 Hz when the blinking stops. - Turn on the switch between P1 (EX) and CM terminals.		
7	:10.0	-. FWD (Forward run) lamp begins to blink and accelerating frequency is displayed on the LED. -. When target run frequency 10 Hz is reached, 10.0 is displayed. - Turn off the switch hetween P1 (FX) and CM terminals		
8	0.0	-. FWD lamp begins to blink and decelerating frequency is displayed on the LED. - . When run frequency is reached to 0 Hz , FWD lamp is turned off and 10.0 is disnlaved		
			Freq PHIFXICM	
W/iring			One	n_ nattorn

8.2 FREQUENCY SETTING VIA POTENTIOMETER \& OPERATING VIA TERMINALS .

8.3 FREQUENCY SETTING VIA POTENTIOMETER \& OPERATING VIA THE RUN KEY.

1		-Apply AC input power to the inverter	
2	0.0	- When 00 is displayed press the Up (${ }^{(}$) key three times.	
3	Drv	-. drv is displayed. Operating method is selectable. - Press the Prog/Ent (${ }^{(}$) key.	
4	1	-. Check the present operating method ("1" is run via control terminal) -. Press the Prog/Ent () key and then Down () key once.	
5	0	- After setting "0". press the Prog/Ent (©) key	
6	Drv	-. "drv" is displayed after " 0 " is blinking. Operation method is set via the Run key on the keypad. - Press the Up key once.	
7	Frq	-. Different frequency setting method is selectable in this code. - Press the Proa/Ent (Q) key	
8	0	-. Check the present frequency setting method (" 0 " is run via keypad). - Press the Un (4) key twice	
9	2	\qquad	
10	Frq	- "Frq" is displayed after" 2 " is blinking. Frequency setting is set via the potentiometer on the keypad. - Turn the notentiometorto cot to 10 10 Hz in oither May ar Mindirection	
11	:10.0	-. Press the Run key on the keypad. -. FWD lamp begins to blink and accelerating frequency is displayed on the LED. - When run frequency 10 Hz is reached, 10.0 is displayed as shown left. - Press the STOP/RST key	
12	:10.0	- FWD lamp begins to blink and decelerating frequency is displayed on the LED. -. When run frequency is reached to 0 Hz , FWD lamp is turned off and 10.0 is displayed as shown left.	
Wiring Operating pattern			

8.4 MULTI-SPEED CONTROL VIA TERMINALS P3, P4, P5.

Screen	Description	Setting	
000	Frequency command	50 Hz	
acc.	Accel time	10s	
dec	Decel time	10s	
drv	Drive mode (Run/stop mode)	0	Run/Stop via equipad.
		1	Runstop viaterminal RX. FX
		2	Oneration via communication ontion.
Fra	Freauency mode	0	Seting via kevoad 1
ST1	Multi-step frequency 1	30 Hz (Multivelocidad 1)	
ST2	Multi-step freauency 2	35 Hz (Multivelocidad 2)	
SL3	Multi-step freauency 3	40 Hz (Multivelocidad 3)	
F21	Max frequency	50 Hz	Velocidad limite_del equino.
F22	Base frequency	50 Hz	
F23	Start frequency	0.1 Hz	Velocidad mínima en el arranque
H30	Motor type select	$\begin{aligned} & \hline 0.4 \\ & 0.8 \\ & 1.5 \\ & 2.2 \\ & 37 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.37 \mathrm{Kw} \\ & 0.75 \mathrm{Kw} \\ & 1.50 \mathrm{Kw} \\ & 2.2 \mathrm{Kw} \\ & 3.7 \mathrm{Kw} \\ & \hline \end{aligned}$
H33	Motor rated current	1.0/20A	
120	Terminal P1 configuration	Configurables	
121	Terminal P2 configuration	Configurables	
122	Terminal P3 configuration	5-Speed - L	
123	Terminal P4 configuration	6-Speed - M	
124	Terminal P5 configuration	7-Spped - H	
130	Multi-Step frequency 4	42 Hz	
131	Multi-Step frequency 5	43 Hz	
132	Multi-Step frequency 6	44 Hz	
133	Multi-Step freauency 7	45 Hz	

Depending P3, P4, P5 digital input status the following preset different frequencies can be selected:

Screen	Preset frequency	Fx/Rx	P5	P4	P3
0 n	$50 \mathrm{H}_{7}$	1	0	0	0
St1	30 Hz	1	0	0	1
St 2	35 Hz	1	\bigcirc	1	0
St 3	$40 \mathrm{~Hz}_{7}$	1	0	1	1
130	45 Hz	1	1	0	0
131	50 Hz	1	1	0	1
132	47 Hz	1	1	1	0
133	42 Hz	1	1	1	1

Multi-speed control wiring configuration.

8.5 PID FOR PRESSURE CONTROL CONFIGURATION.

Screen	Description	Setting	
000	Frequency command	50 Hz	
ACC	Accel time	10s	
DEC	Decel time	10 s	
DRV	Drive mode (Run/stop mode)	0	Run/Stonviaequipad
		1	Run ston via terminal RX, EX
		2	Oneration via communication notion
FRQ	Frequency mode	0	Seting via keypad 1
		8	Modbus-RTU communication
F21	Max frequency	50 Hz	
F 22	Base frequency	50 Hz	
F23	Start frequency	$\mathrm{n}^{1} \mathrm{~Hz}$	
F 24	Frequency high/low limit select	0	NO(limits are set hy F21 and F23)
		1	YES (limits are sethy F25and 26)
F25	Frquency highlimit	OHz	
F26	Frequency low limit	50 Hz	
H30	Motor type select	$\begin{gathered} 0.2 \\ 0.4 \\ 0.75 \\ 1.5 \\ 2.2 \\ \hline \end{gathered}$	$\begin{aligned} & 0.2 \mathrm{Kw} \\ & 0.4 \mathrm{Kw} \\ & 0.75 \mathrm{Kw} \\ & 1.5 \mathrm{Kw} \\ & 22 \mathrm{Kw} \\ & \hline \end{aligned}$
H33	Motor rated current	A	
H40	Controlmade select	2	PIDfeedhack control
H 50	PID feedback select	0	Terminalinput $1(0-20 \mathrm{~mA}$)
		1	Terminalinput $\mathrm{V} 1(0-10 \mathrm{~V}$)
H51	Pgainfor PlD controller	300.0	
H52	Integral time for PID controller	10	
H 53	Differential time for PID controller	0	
H79	Software version	13	
16	Filter time constant for $\sqrt{ } / 1$ input	10 ms	
17	V/1 innutMin voltage	-	
18	Ereauency corresnonding to 17	$\mathrm{OH}^{\text {O}}$	
19	V1 input Max voltage.	10.0 V	
110	Frequency corresponding to 19	50 Hz	
111	Filter time constant forlinput	10 ms	
112	- input minimum current	0 mA	
113	Erequency corresnonding to 12	nHz^{2}	
114	- input max current	200 mA	
115	Frequency corresponding to 114	50 Hz	

NOTE: Maximum and minimumfrequency limits are set in screen F21(max frequency) and F23 (Start frequency).

NOTE: SD100 do not have $12-30 \mathrm{Vdc}$ power supply. External power supply must be required.

PID for pressure control wiring configuration.

POWER ELECTRONICS

C/ Leonardo da Vinci, 24-26 • 46980 • Parque Tecnológico PATERNA •VALENCIA • ESPAÑA Tel. $902402070+34961366557$ • Fax. +34 961318201 www.power-electronics.com

