Chapter 5 Terminal Descriptions

TERMINAL DESCRIPTIONS 582/583

1. Drive Healthy
(582 only)
2. Run
3. Stop
4. Direction

NOTE Digital inputs sink approximately 5 mA at 24 V .
5. +10 V Ref
6. Speed Setpoint
7. $0 V$ Ref
8. Ramp Output
9. Trim
10. +24V Supply healthy. 250 mA maximum at 24 V . Connect external 0 V to drive 0 V (terminal 11).
This terminal is not used on the 583. See drive healthy relay terminals overleaf.
: Digital input to enable drive: Switch to +24 V to enable. Connection via momentary contact may be employed; see diagram number HJ385167D.
: Digital input to stop drive: Momentary open circuit to stop. Leave open circuit if single Run switch (on/off) is employed.
: Digital input to control phase rotation: Connect to +24 V to reverse direction of motor shaft.
: Precision 10V reference for external potentiometer supply. Maximum loading: 10 mA . Short circuit protected.
: Analogue input to control frequency of 3-phase output.
$0-10 \mathrm{~V}$ represents $0-100 \%$ motor speed.
Nominally 10 K potentiometer input.
: Zero Volts for analogue references.
: Analogue output representing the output frequency of the drive. $0-10 \mathrm{~V}$ represents $0-100 / 120 \mathrm{~Hz}$, depending on position of SW1. Maximum loading: 10 mA .
: Analogue input which may be used as a local trim of the speed to allow drives to be cascaded from a master reference.
$0-10 \mathrm{~V}$ represents $0-100 \%$ speed increase.
: Unregulated 24 V supply for RUN, STOP, DIRECTION switches. Only
: Open collector transistor output which is pulled low to indicate drive 20 mA available, thus this output is not intended to be used to drive healthy relay.
11. Gnd
: Zero volt reference for digital inputs, (RUN, STOP, DIRECTION) and healthy output.
12.
13.
14.

User Option Connections
15.
16.
17.
18.

Hesto
Conn.
(582 only)

Used to control a 5801 brake unit.
See connection diagram HJ058055.
Used to control a 5801 brake unit.
See connection diagram HJ057820.

All terminals are suitable for $2.5 \mathrm{~mm}^{2}$ wire (12 AWG) recommended tightening torque $0.5 \mathrm{Nm}(4.5 \mathrm{lb}-\mathrm{in})$.

TERMINAL DESCRIPTIONS 5831

1. Run
2. Stop
3. Direction

NOTE Digital inputs sink approximately 5 mA at 24 V .
4. +10 V Ref
5. Speed Setpoint : Analogue input to control frequency of 3-phase output. $0-10 \mathrm{~V}$ represents $0-100 \%$ motor speed.
Nominally 10 K potentiometer input.
6. 0V Ref : Zero Volts for analogue references.
7. Ramp Output : Analogue output representing the output frequency of the drive. 0-10V represents $0-100 / 120 \mathrm{~Hz}$, depending on position of SW1. Maximum loading: 10 mA .
8. Trim : Analogue input which may be used as a local trim of the speed to allow drives to be cascaded from a master reference.
$0-10 \mathrm{~V}$ represents $0-100 \%$ speed increase.
9. +24 V Supply : Unregulated 24 V supply for RUN, STOP, DIRECTION switches. Only 20 mA available, thus this output is not intended to be used to drive healthy relay.
10. Gnd : Zero volt reference for digital inputs, (RUN, STOP, DIRECTION) and healthy output.
11.
12.
13.
14.
15.

User Option Connections $\quad 20 \mathrm{~mA}$ input. serial comms or other specialised functions.
16.
17. $\int:$ See connection diagram HJ385002.

All terminals are suitable for $2.5 \mathrm{~mm}^{2}$ wire (12 AWG) recommended tightening torque $0.5 \mathrm{Nm}(4.5 \mathrm{lb}-\mathrm{in})$.

POWER TERMINALS

582

NOTE: The 582 has no chassis ground except when a gland plate is fitted. Power terminal blocks are suitable for $2.5 \mathrm{~mm}^{2}$ wire (12 AWG) recommended tightening torque $0.5 \mathrm{Nm}(4.5 \mathrm{lb}-\mathrm{in})$.
583^{1}

Input Terminals	$\begin{aligned} & \text { L1 (L) } \\ & \text { L2 (N) } \\ & \text { L3 } \end{aligned}$	$220 / 240 \mathrm{~V}$ AC $\pm 10 \%$ Single phase L and N 3-phase L1, L2, L3
Brake Connections	$\begin{aligned} & \text { DC + } \\ & \text { DC - } \end{aligned}$	DC Link Positive DC Link Negative
Health Relay Health Relay	HEALTH ${ }^{2}$	Contact rating 3A 250 V AC/30V DC
Motor Connections	M1 (U) M2 (V) M3 (W)	3-phase 0 to $220 / 240 \mathrm{~V}$ AC 0 to $100 / 120 \mathrm{~Hz}$

NOTE: The 583 can be grounded at the heatsink. Power Terminal Blocks are suitable for $4 \mathrm{~mm}^{2}$ wire (10 AWG) recommended tightening torque $0.5 \mathrm{Nm}(4.5 \mathrm{lb}-\mathrm{in})$.

5831^{1}

Input Terminals	$:$L1 (L) L2 (N)
L3	

Single phase L and N

3-phase L1, L2, L3\end{array}\right.\)

| $\left.\begin{array}{l}\text { Health Relay } \\ \text { Health Relay }\end{array}\right\}$ | HEALTH 2 |
| :--- | :--- | :--- |\quad| Contact rating 3A 250V AC/30V DC |
| :--- |
| Brake Connections
 (Faston Connectors) |
| $:$ | | $\mathrm{DC}+$ |
| :--- |
| $\mathrm{DC}-$ |\(\quad\left\{\begin{array}{l}DC Link Positive

DC Link Negative\end{array}\right.\)

NOTE: The 5831 can be grounded at the base plate. Power terminal blocks are suitable for $4 \mathrm{~mm}^{2}$ wire (10 AWG) recommended tightening torque $0.5 \mathrm{Nm}(4.5 \mathrm{lb}-\mathrm{in})$.
NOTES: 1. The ground terminal is indicated by the IEC grounding symbol thus:- $\xlongequal{\square}$
2. Contacts closed when drive is healthy.

CUSTOMER ADJUSTMENTS

P1 Low Speed/Frequency Voltage Boost
V_{B}
: Rotate clockwise to increase the voltage/frequency ratio at low speed; this gives the motor more low speed torque. Excessive adjustment may cause the current limit to be reached and the motor may not turn.
: Rotate clockwise to increase the maximum current available from the drive. If current demand exceeds current limit, the speed/frequency will be reduced to keep the current within this maximum.
Adjustment 50% to 150% of rated current.
Note: Motor may not turn if turned fully anti-clockwise.
P3 Maximum Speed

P4 Minimum Speed
N ∇
P5 Ramp Up Time

P6 Ramp Down Time

: Rotate clockwise to increase maximum speed/frequency at which drive will run with 100% speed demand.
Adjustment is from $0-100 / 120 \mathrm{~Hz}$.
In the event of conflict between Minimum and Maximum settings, Maximum will always override.
: Rotate clockwise to increase minimum speed/frequency at which drive will run with zero speed demand.
Adjustment is from $0-100 / 120 \mathrm{~Hz}$.
: Rotate clockwise to increase the time taken to ramp up to speed/frequency.
Output adjustment range is either 0.1-4 seconds or 2.5100 seconds depending upon position of switch 4.
: Rotate clockwise to increase the time taken to ramp down to speed/frequency.
Output adjustment range is either 0.1-4 seconds or 2.5100 seconds depending upon position of switch 5 .

WARNING

THE SIX TRANSISTOR HEATSINKS OF THE 582 ARE LIVE. CARE SHOULD BE TAKEN WHEN MAKING ADJUSTMENTS TO AVOID CONTACT WITH THESE PARTS.

OPTION SWITCHES

Switch positions are only read at power-on, so if any adjustment of switches is required, the power must be removed before doing so.

SW2 SW3
(ON) (ON) Reserved

| SW4 | (OFF) | Ramp Up Range | $:$ | $0.1-4 \mathrm{sec}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | (ON) | | $:$ | $2.5-100 \mathrm{sec} \quad$ to base freq. |
| | | | | |
| SW5 | (OFF) | Ramp Down Range | $:$ | $0.1-4 \mathrm{sec}$ |
| | (ON) | | $2.5-100 \mathrm{sec}$ to base freq. | |
| | | | | |
| SW6 | (OFF) | Reserved | $:$ | THIS SW MUST REMAIN OFF. |

NOTES:

1. Controllers are shipped with switches set to the lower rating. Set switches to the required rating before use. Setting of the switches on the $5831.1 / 1.5 \mathrm{~kW}$ version to 2.2 kW will cause damage and invalidate the warranty.
2. DC injection braking may be selected by setting switches 7 and 8 to the 'on' position. When a stop command is received, the drive will apply a low frequency braking current to the motor, until the shaft is almost at a standstill. The amount of braking is controlled by the current limit setting.
DC current is then applied for a short time, to bring the shaft finally to a standstill. This is controlled by the boost adjustment.
3. To achieve very fast ramp up rates, e.g., 0.1 seconds, it may be necessary to set this switch to 'on'.
