Dnia 9 listopada 2000 roku, na cmentarzu Rakowickim w Krakowie, pożegnano na zawsze **dr. inż. Lesława Turkiewicza**, adiunkta w Zakładzie Elektrotechniki, Wydziału Elektrotechniki, Automatyki, Informatyki i Elektroniki Akademii Górniczo-Hutniczej.

Lesław Turkiewicz urodził się 9 lutego 1939 roku w Nowym Sączu, w rodzinie nauczycielskiej, która wkrótce po wojnie osiedliła się w Krakowie. Tu ukończył szkołę podstawową (1952), liceum im. B. Nowodworskiego (1956) oraz studia z zakresu elektrotechniki w Akademii Górniczo-Hutniczej (1962). W okresie licealnym wykazywał wszechstronne uzdolnienia: humanistyczne, zainteresowanie literaturą, kulturą klasyczną, teatrem i muzyką, jak również zdolności do nauk ścisłych.

Po ukończeniu studiów podjął pracę w Katedrze Elektrotechniki Ogólnej, kierowanej przez prof. Stanisława Kurzawę. Znalazł tu okazję do rozwinięcia i wykorzystania swego talentu matematycznego. W przepisowym terminie obronił z wyróżnieniem pracę doktorską pt. "Parobiegunnikowa reprezentacja obwodów elektrycznych" (1971), za którą otrzymał ówczesną Nagrodę Ministra. Bardzo twórczą pracę naukową — głównie badania teoretyczne — cechującą się ścisłością, logiką i prostotą myśli, uzupełniał pracą dydaktyczną, w której Jego rzetelność a także wymagania, jak również sprawiedliwe oceny, były prawie przysłowiowe. Był za to wielokrotnie nagradzany przez zwierzchników i wyróżniany przez studentów. W prowadzonym przez Niego studenckim kole naukowym zdobywało doświadczenie wielu obecnych pracowników Wydziału.

Wśród współpracowników z Zakładu Elektrotechniki cieszył się dużym szacunkiem i autorytetem. Bez przesady można powiedzieć, że był sumieniem tego Zakładu. W każdej trudnej sytuacji czekano na Jego zdanie, chociaż często nie bez obawy. Wiedziano bowiem, że ocena sytuacji, którą przedstawi będzie trafna i sprawiedliwa, ale nie zawsze łatwa do przyjęcia: że czasem będzie się trzeba przyznać do błędu lub zmienić swoje postępowanie, a jeżeli nie — to pozostanie żyć z poczuciem winy.

W latach 1972–1977 dr Lesław Turkiewicz był zastępcą redaktora Zeszytów Naukowych AGH serii "Elektryfikacja i mechanizacja górnictwa i hutnictwa".

Pozanaukowe zamiłowania realizował w pełni w życiu rodzinnym. W roku 1964 zawarł związek małżeński z Danutą Lenart (wówczas studentką UJ, obecnie — doktor nauk fizycznych). Nie "mieć" lecz "być" — widzieć, słyszeć i przeżywać było zasadą postępowania w Jego rodzinie. Stąd liczne wycieczki w dolinki i w góry, podpatrywanie przyrody, zwiedzanie miejsc historycznych, rozmowy ze spotykanymi ludźmi i patriotyczne wychowywanie dzieci. Przedwczesna śmierć syna Michała (1980) spowodowała ogromną zmianę w życiu śp. Lesława. Odkładając na bok osobistą karierę naukową poświęcił się dydaktyce i pracy społecznej. Angażował się w organizowanie Solidarności w AGH oraz w budowę kościoła i tworzenie parafii na swoim osiedlu. Żył wtedy w znacznej mierze dla innych: chorych, starszych i cierpiących.

Powrotem do szkolnej działalności literackiej stały się Jego felietony systematycznie publikowane w BIP-ie i sygnowane skromnie literą "/L/". Przez prawie 5 lat, odnosząc się do aktualnych wydarzeń, nawiązywał do historii, wydobywał z niej dobre wzorce, a Czytelnikowi zostawiał zawsze prawo do osobistej oceny (i trwania w błędzie).

Postępująca choroba coraz bardziej ograniczała Jego działalność, do końca jednak, z pomocą Żony i studentów, na wózku inwalidzkim zjawiał się, by odbyć zajęcia dydaktyczne.

Dr inż. Lesław Turkiewicz zmarł 5 listopada 2000 r.

opracowano na podstawie materiałów BIP AGH, 2000

Opracowanie pt. "Elementy Teorii Obwodów — Materiały do Wykładu" stanowią notatki, przygotowane przez naszego przedwcześnie zmarłego Śp. Kolegę i Przyjaciela **dr. inż. Leszka Turkiewicza** do wykładu z Teorii Obwodów dla studentów Wydziału Elektrotechniki, Automatyki, Informatyki i Elektroniki AGH. Jest to opracowanie niezwykle cenne, dlatego nie dokonywaliśmy w nim żadnych zmian i uzupełnień. Trzeba jednak pamiętać, że wyświetlanym na ekranie w trakcie wykładu notatkom, towarzyszył komentarz ich Autora, pełen pasji, refleksji i głębokich przemyśleń. Tego wszystkiego nikt z nas nie jest w stanie uzupełnić. Dlatego czytelnik często będzie zmuszony sam poszukiwać uzasadnienia dla takiego a nie innego postępowania Autora przy analizowaniu konkretnych obwodów elektrycznych. Jesteśmy przekonani, że trud ten opłaci się z całą pewnością i da satysfakcję zmagającemu się z tajnikami teorii obwodów przyszłemu inżynierowi elektrykowi. Natomiast tym, którzy trudowi temu nie podołają powinien uświadomić, że ich wiedza elektryczna wymaga znaczących uzupełnień.

Publikacją tego opracowania pragniemy jako Koledzy i Przyjaciele złożyć hołd Śp. dr. inż. Leszkowi Turkiewiczowi. Pamięć o Jego niezwykłej osobowości i pasji jako inżyniera, pracownika naukowego, a może nade wszystko humanisty pozostanie na zawsze w naszych sercach. Pamiętamy Jego zmagania z nieuleczalną chorobą, pamiętamy Jego uśmiech i poczucie humoru, pamiętamy Jego troskę o każdego znajdującego się w potrzebie, pamiętamy Jego zaangażowanie w nauczanie studentów (często niestety źle rozumiane), którym bez reszty poświęcił swoje życie. Chcielibyśmy aby publikacja ta zamieszczona na stronach Internetu, przybliżała pamięć o tej Niezwykłej Postaci obecnym i przyszłym studentom i absolwentom Naszego Wydziału.

> W imieniu Pracowników Zakładu Elektrotechniki **Prof. Stanisław Mitkowski**

Kraków, 10 lutego 2002 roku

dr inż. Lesław Turkiewicz

"Elementy teorii obwodów" Materiały do wykładu

Spis treści

Obwód elektryczny i jego aksjomatyka 3
Prąd i napięcie
Elementy obwodu elektrycznego 8
Gałęzie obwodu i jego struktura geometryczna, prawa Kirchhoffa 14
Moc
Tor długi jednorodny z wymuszeniem stałym 23
Przykłady analizy obwodów rezystancyjnych ze źródłami sterowanymi 26
Elementy geometrii obwodu
Dwie metody analizy obwodu — motywacja
Twierdzenie o źródle zastępczym (Thévenina i Nortona) 44
Inne zastosowanie twierdzeń

Obwód elektryczny i jego aksjomatyka _

W realnych urządzeniach elektrycznych (ściślej — elektroenergetycznych) dokonują się przemiany energii (jej form i parametrów) \rightarrow generatory, silniki, urządzenia grzewcze, transformatory itd.

U podstaw działania tych urządzeń tkwią zjawiska opisane **równaniami pola elektromagnetycznego** (z niezbędnymi uproszczeniami).

Modelowanie (reprezentacja) polowych zjawisk energetycznych \rightarrow zastosowanie "obwodów elektrycznych".

Definicja. Obwód elektryczny jest modelem realnego układu (urządzenia) elektrycznego (elektromechanicznego), który reprezentuje zjawiska energetyczne układu, z mniejszą lub większą dokładnością.

Założenia upraszczające: **liniowość** (spełnienie zasady superpozycji), stacjonarność (parametry układu nie zależą od czasu), zaniedbanie emisji fal elektromagnetycznych \rightarrow "obwody SLS".

Rozpatruje się również:

- obwody nieliniowe,
- obwody o parametrach "rozłożonych" (przeciwieństwo "skupionych"), na przykład "tor długi",
- obwody niestacjonarne (na przykład parametry zmieniają się w czasie periodycznie).

Równania obwodów elektrycznych są na ogół prostsze od równań pola, ale mają **motywację polową**.

Niekoniecznie badany (rozwiązywany) obwód musi być modelem istniejącego, realnego układu — analiza teoretyczna bez wymogów aplikacyjnych.

Prąd i napięcie _

Prąd przewodzenia (środowisko przewodzące), parametr γ [Sm⁻¹]

 $\overline{E} \left[V/m \right]$ — wektor natężenia pola elektrycznego (podtrzymywanego przez źródło) $\overline{J} \left[A/m^2 \right]$ — wektor gęstości prądu $\overline{J} = \gamma \overline{E}$ (lokalne prawo Ohma)

$$i \left[A \right] \stackrel{\text{df}}{=} \int_{S} \overline{J} \cdot \overline{ds} \quad \longleftarrow \text{ strumień wektora } \overline{J} \text{ przez płat } S$$
$$\overline{J} \cdot \overline{ds} = J \cos \alpha \, ds$$

 \overline{ds} — wzdłuż normalnej *n* (do *S*), zwrot określa orientacja *i*

S — płat na **dowolnej**, niekoniecznie płaskiej powierzchni przekroju poprzecznego (ograniczony brzegiem przewodnika)

$$S'$$
 — inny płat

 S_b — powierzchnia brzegu

Dygresja

$$\int_{S} \overline{J} \cdot \overline{ds} = \int_{S'} \overline{J} \cdot \overline{ds'} \quad (\text{oczywiste, dowolność wyboru } S)$$
$$\int_{S_{b}} \overline{J} \cdot \overline{ds_{b}} = 0$$
$$\int_{S'} \overline{J} \cdot \overline{ds'} + \int_{S} \overline{J} \cdot \overline{ds} + \int_{S_{b}} \overline{J} \cdot \overline{ds_{b}} = \Phi_{\Sigma} \overline{J} \cdot \overline{d\sigma} = 0$$

 $\Sigma = S' \cup S \cup S_b$ — powierzchnia zamknięta

 $\overline{d\sigma}$ — wektorowy element powierzchni Σ (w każdym punkcie — wzdłuż normalnej zewnętrznej do Σ)

Prąd przesunięcia (środowisko dielektryczne), parametr ε [Fm⁻¹]

$$Q = Q(t) \rightarrow \overline{D} = \overline{D}(t) = \varepsilon \overline{E}(t) \left[As/m^2 \right]$$

 \overline{D} — wektor indukcji elektrycznej

— układ pojemnościowy (B_1 i B_2 — bryły przewodzące)

— pole elektryczne — zmienne w czasie, lecz quasi-stacjonarne, podtrzymywane przez źródło zmiennego w czasie napięcia.

Przez dowolny przekrój poprzeczny przewodów doprowadzających w elementarnym czasie dt przepływa elementarny ładunek $dq \rightarrow$ prąd przewodzenia

$$i=\frac{dq}{dt},$$

przy czym dq zmienia ładunek **zgromadzony** na B_1 i B_2 :

$$dQ = dq.$$

Prąd przesunięcia (sztuczny)

$$i' \stackrel{\rm df}{=} \frac{dQ}{dt} = i$$

uzupełnia prąd przewodzenia, płynący **do** B_1 i **od** B_2 (zakładając, że dq = dQ > 0).

Ponieważ ładunki +Q i –Q rozkładają się odpowiednio na powierzchniach brył B_1 i B_2 z gęstościami σ_1 [As/m²] oraz σ_2 (sgn σ_2 = –sgn σ_1) oraz zachodzi:

 $\overline{D_1} = \overline{1}_n \sigma_1$ (na S_1 , $\overline{1}_n$ — wektor jednostkowy wzdłuż normalnej zewnętrznej do s_1) $\overline{D_2} =$ analogicznie,

otrzymujemy:

$$\frac{dQ}{dt} = \frac{d}{dt} \int_{s_1} \tau_1 ds_1 = \frac{d}{dt} \int_{s_1} (\overline{1}_n \tau_1) \cdot (\overline{1}_n ds_1), \quad (\text{przy czym } \overline{1}_n ds_1 = \overline{ds}_1).$$

Ostatecznie,

$$i' = \int_{s_1} \frac{\delta \overline{D_1}}{\delta t} \cdot \overline{ds_1} = \int_{s} \overline{J'_1} \cdot \overline{ds_1} \quad \text{(oczywiste),}$$

a zatem, na powierzchni bryły B_1 (od strony zewnętrznej) gęstość prądu przesunięcia $\overline{I'_1}$ [As/m²] wynosi $\frac{\delta \overline{D_1}}{\delta t}$ i analogicznie na powierzchni bryły B_2 .

Ciągłość prądu przesunięcia w całym obszarze dielektryka będzie zapewniona, gdy na dowolnej powierzchni *S* (rysunek)

$$\overline{J'} = \frac{\delta \overline{D}}{\delta t}$$
, a wiệc $i' = \int_{S} \frac{\delta \overline{D}}{\delta t} \cdot \overline{ds}$,

gdzie \overline{ds} — wektorowy element powierzchni S.

Dygresja

W przypadku nieidealnego środowiska dielektrycznego $/\varepsilon, \gamma/$ wystąpi zarówno prąd przewodzenia jak i przesunięcia, a jego gęstość wypadkowa:

$$\overline{J_w} = \overline{J} + \overline{J}' = \gamma \overline{E} + \varepsilon \frac{\delta \overline{E}}{\delta t}.$$

Wypływ pełnego (wypadkowego) prądu przez powierzchnię zamknięt
ą Σ jest równy zero:

czyli

$$\oint_{\Sigma} \overline{J} \cdot \overline{ds} = -\oint_{\Sigma} \overline{J}' \cdot \overline{ds} = -\frac{dQ}{dt}$$

Tym samym

$$dt \oint_{\Sigma} \overline{J} \cdot \overline{ds} = -dQ$$

Oczywistym jest, że wypływ prądu przewodzenia z obszaru ograniczonego powierzchnią Σ może dokonać się jedynie kosztem ubytku -dQ ładunku zawartego w tym obszarze.

Napięcie

Wielkość ta dotyczy pary punktów *A* i *B* w obszarze pola elektrycznego (stacjonarnego lub quasi-stacjonarnego), zarówno w środowisku dielektrycznym jak i przewodzącym.

$$u = u_{AB} = \int_{A}^{B} \overline{E} \cdot \overline{dl} \left[\mathbf{V} \right] = \varphi_{a} - \varphi_{b}$$

(całka liniowa wzdłuż dowolnego łuku
 \mathscr{L}); $\varphi_{A,B}$ — potencjały

$$\overline{E} \cdot \overline{dl} = E \cos \beta \, dl$$

Dygresja

Ponieważ wybór łuku między A i B w polu stacjonarnym (potencjalnym) jest dowolny,

$$u = u'; \qquad \int_{A_{\mathcal{L}}}^{B} \overline{E} \cdot dl = \int_{A_{\mathcal{L}'}}^{B} \overline{E} \cdot \overline{dl} \quad \longleftrightarrow \quad \oint_{\mathcal{K}} \overline{E} \cdot \overline{dl} = 0 \quad (\text{warunek bezwirowości})$$

gdzie $\mathcal{K} = \mathcal{L} \cup \mathcal{L}'$ — pętla (kontur).

Elementy obwodu elektrycznego

W ujęciu graficznym, obwód elektryczny można identyfikować ze zbiorem połączonych ze sobą **elementów** (w najprostszej wersji — dwukońcówkowych), **aktywnych** i **pasywnych**.

W ujęciu ściśle analitycznym, obwód jako "model" można by identyfikować z **układem równań**, opisujących wszystkie powiązania (więzy) wielkości charakteryzujących ten model. Obydwa ujęcia muszą być równoważne, czyli **modelowi graficznemu** można przypisać **model analityczny** i na odwrót.

O ile **jednoznaczność** modelu analitycznego jest bezdyskusyjna, o tyle przyporządkowanie obwodu graficznego układowi równań może być na ogół dokonane na wiele sposobów.

Elementy aktywne to **niezależne** źródła napięcia i prądu (reprezentują urządzenia zasilające), lub **źródła sterowane** (występują z reguły w modelach obiektów elektronicznych).

Elementy pasywne (*R*, *L*, *C*) symbolizują odpowiednio:

- rozpraszanie energii, czyli przemianę energii elektrycznej na cieplną (lub mechaniczną),
- gromadzenie (konserwację) energii w polu magnetycznym układu,
- gromadzenie energii w polu elektrycznym.

Równania definicyjne (a zarazem — funkcjonowanie elementów) stanowią po prostu zależności napięciowo-prądowe u(i) lub/i prądowo-napięciowe i(u), umotywowane opisem adekwatnych zjawisk fizycznych.

Definicje parametrów *R*, *L*, *C* angażują jednak wielkości polowe (na przykład \overline{E} , \overline{J}) oraz stałe materiałowe (γ , ε , μ).

Ścisłość opisu elementów wymaga **orientacji** napięć i prądów (względem końcówek). W praktyce stosuje się tak zwane "strzałki zwrotu", które wskazują albo **hipotetyczny** kierunek ruchu ładunków dodatnich (zwrot prądu), albo końcówkę o **hipotetycznie** wyższym potencjale (zwrot napięcia).

Jeśli badana, "zastrzałkowana" wielkość okaże się dodatnia, to przyjęta a priori strzałka wskazuje zwrot rzeczywisty (i na odwrót).

Przykład

$$u(t) \qquad i(t) = A \sin \omega t, \quad A > 0$$

$$a \circ b \qquad u(t) = B \cos \omega t, \quad B > 0$$

Prąd (ładunki dodatnie) płynie od "*a*" do "*b*" (jak wskazuje strzałka), gdy *i*(*t*) > 0, czyli w przedziałach czasu (0, $\frac{1}{2}T$), (*T*, $\frac{3}{2}T$) itd., a w pozostałych przedziałach — od "*b*" do "*a*", $T = \frac{2\pi}{\omega}$.

Analogicznie, $\varphi_a > \varphi_b$ w przedziałach $(0, \frac{1}{4}T), (\frac{3}{4}T, T)$ itd., w których $\cos \omega t > 0$.

Przy okazji zauważmy, że zależność u(i) musi być:

$$u(t) = \operatorname{const} \frac{di}{dt}, \quad \operatorname{const} > 0.$$

Źródła niezależne

symbole graficzne:

Źródłom przypisujemy wyjątkowo oznaczenia:

e[V] — napięcie źródłowe

j[A] — prąd źródłowy (zamiast u, i).

1)	u(t) = e(t)	$u \neq f(i_e)$	własności definicyjne
2)	i(t) = j(t);	$i \neq f(u_j) \int$	

Jak widać, istotą definicji jest **negacja** zależności napięcia źródłowego od prądu i_e źródła oraz zależności prądu źródłowego od napięcia u_j .

Napięcie źródłowe e(t) oraz prąd źródłowy j(t), są zadanymi a priori funkcjami czasu, w szczególności — stałymi.

Ilustracje

Źródła sterowane

c) źródło prądu sterowane napięciowo, u_1 — napięcie sterujące

İ1

 $u_1 = 0$

 i_2

 ϱi_1

 u_2

d) źródło prądu sterowane prądowo,

 μ , ρ [V/V], γ [A/V], α — stałe, współczynniki sterowania

*i*₁ — prąd sterujący

Przykłady obwodów sprzecznych

Oporność (przewodność), element R(G)

Parametr zwany opornością dotyczy ograniczonego obszaru środowiska przewodzącego, którego otoczenie stanowi środowisko nieprzewodzące ($\gamma_0 = 0$).

W najprostszym i najbardziej typowym przypadku mówimy o oporności fragmentu przewodnika wiodącego prąd, zawartego między dwoma płatami ekwipotencjalnymi.

 S_1, S_2 — płaty ekwipotencjalne (powierzchni ekwipotencjalnych) w obszarze przewodnika $A \in S_1, B \in S_2$

$$\frac{u}{i} = \frac{\int_{A}^{B} \overline{E} \cdot \overline{dl}}{\int_{S} \gamma \overline{E} \cdot \overline{ds}} = \text{const} \stackrel{\text{df}}{=} R\left[\Omega\right], \quad G = \frac{1}{R}\left[S\right]$$

 $(u = var. \iff i = var.)$

wybór S — dowolny (wykazać!)

Przykład: oporność słabo przewodzącej izolacji linii współosiowej (kabla)

założenia: $l \gg r_2$, przewód wewnętrzny (żyła) oraz powłoka — idealne przewodniki — płaty ekwipotencjalne (powierzchnie walcowe)

u = const

Prąd (od żyły do powłoki), $i = \int_{S} \overline{Jds} = \underbrace{2\pi lr}_{S} \cdot J(r)$

$$\overline{E}(r) = \overline{1}_r \frac{J(r)}{\gamma} = \overline{1}_r \frac{i}{2\pi l \gamma r}, \quad \overline{1}_r \quad -\text{wektor jednostkowy}$$

Przyjmujemy dla prostoty: $\overline{dl} = \overline{1}_r dr$, a zatem

$$u = \int_{r_1}^{r_2} \overline{E}(r) \cdot \overline{1}r dr = \frac{i}{2\pi l\gamma} \int_{r_1}^{r_2} \frac{dr}{r} = \frac{i}{2\pi l\gamma} ln \frac{r_2}{r_1}$$

 $(\overline{1}r\cdot\overline{1}r=1)$

Ostatecznie

$$R_{iz} = \frac{u}{i} = \frac{\ln \frac{r_2}{r_1}}{2\pi l \gamma} = \text{const}$$

(Gdy $r_1 \rightarrow r_2$, to $R_{iz} \rightarrow \infty$; gdy $l \nearrow, R_{iz} \searrow$)

element R

$$u(t) \qquad u(t) = Ri(t), \quad R > 0$$

$$i(t) = Gu(t), \quad G = \frac{1}{R}$$

 $i > 0 \leftrightarrow u > 0$ (prąd płynie od płata o wyższym potencjale do płata o niższym potencjale)

Uwaga

Element *R* może być zastosowany w modelu graficznym (obwodzie) nie tylko jako reprezentant oporności konkretnego obiektu dwukońcówkowego (rezystora, uzwojenia itp.), ale również w symbolicznym charakterze. Przykładowo, tak zwany schemat zastępczy transformatora (obwód elektryczny) zawiera element R_{Fe} , który symbolizuje tak zwane straty w rdzeniu ferromagnetycznym, czyli zjawisko rozpraszania energii, jeśli transformator jest zasilany napięciem sinusoidalnie zmiennym.

Również obciążenie (mechaniczne) silnika indukcyjnego reprezentuje w schemacie zastępczym element R, zależny od poślizgu, a tym samym od prędkości obrotowej.

Gałęzie obwodu i jego struktura geometryczna, prawa Kirchhoffa _

W obwodzie elektrycznym można wyodrębnić nie tylko pojedyncze elementy, ale również pewne zbiory elementów, zwane **gałęziami**, połączonymi ze sobą w punktach zwanych **węzłami**.

Jeśli dla pewnego dwukońcówkowego zbioru elementów znana jest zależność u(i) lub i(u), to zbiór ten można potraktować jako gałąź (w szczególności — pojedynczy element pasywny lub aktywny).

Przykłady

Strukturę geometryczną obwodu reprezentuje tak zwany graf obwodu /G/, w którym każdą gałąź symbolizuje odcinek (łuk).

Konturem /K/ nazywamy zbiór gałęzi obwodu (lub podgraf jego grafu), który tworzy zamkniętą drogę, z zastrzeżeniem, że każdy węzeł wzdłuż niej należy do dwu gałęzi (węzły drugiego rzędu)

Przykładowo:

 $K_1 = \{1, 3, 6\}, \quad K_2 = \{5, 4, 6\}, \quad K_3 = \{1, 2, 4, 6\}$

Jak widać, w każdym z tych trzech konturów występuje gałąź (własna), która do pozostałych nie należy: 3,5,2 odpowiednio.

Jest to z pewnością warunek wystarczający, by zbiór konturów K_1 , K_2 , K_3 można uznać za **niezależny**.

Uwaga

Zbiór $\{1, 2, 4, 6, 5\}$ nie jest konturem, gdyż węzeł c w tym podgrafie jest węzłem trzeciego rzędu.

Pękiem /*P*/ nazywamy **minimalny** zbiór gałęzi (podgraf), który ma tę własność, że ich **odcięcie** wytwarza dwa rozłączne podgrafy G_1 i G_2 : $G_1 \cap G_2 = \emptyset$, $(G_1 \cup G_2) \cup P = G$.

Pęk nazywamy **węzłowym**, jeśli zbiór G_1 lub zbiór G_2 jest zbiorem pustym ($G_1 = \emptyset$ lub $G_2 = \emptyset$).

Pęk można wyznaczyć przecinając jednokrotnie niektóre gałęzie obwodu (grafu) krzywą zamkniętą (pętlą) — na rysunku linia przerywana zielonego koloru.

Przykładowo:

$$P_1 = \{1, 2, 4, 6\}; \qquad (G_1 = \{5\}, G_2 = \{3\})$$

$$P_2 = \{1, 2, 3\}; \qquad (G_1 = \emptyset, G_2 = \{6, 5, 4\})$$

Uwaga

Zbiór {1,2,3,4} **nie** jest pękiem, bo nie jest **minimalny**. Napięciowe prawo Kirchhoffa /NPK/ odnosi się do dowolnego konturu.

Prądowe prawo Kirchhoffa /PPK/ dotyczy dowolnego pęku. Sformułowanie PPK i NPK wymaga **orientacji** gałęzi. Należy również zorientować kontury (przyjąć kierunki obiegu drogi zamkniętej) oraz pęki — strzałki skierowane na zewnątrz lub do wnętrza obszarów ograniczonych pętlami.

Przyjmując k, ν , μ jako odpowiednio wskaźniki gałęzi, pęków i konturów, k = 1, 2, ..., g (liczba gałęzi obwodu), prawa Kirchhoffa można zapisać w postaci:

PPK (dla
$$P_{\nu}$$
): $\sum_{k=1}^{g} \alpha_{\nu k}$ $i_k = 0, \alpha_{\nu k} = \pm 1 \text{ lub } 0$

NPK (dla
$$K_{\mu}$$
): $\sum_{k=1}^{g} \beta_{\mu k}$ $u_{k} = 0, \ \beta_{\mu k} = \pm 1 \ \text{lub } 0$

 $\alpha_{vk} \neq 0$ gdy gałąź $k \in P_v$, w przeciwnym razie — zero

 $\beta_{\mu k} \neq 0$ gdy gałąź $k \in K_m u$, w przeciwnym razie — zero

Znaki współczynników kombinacji liniowych zależą oczywiście od orientacji gałęzi względem orientacji pęków i konturów, do których te gałęzie należą.

Mnożąc dowolne równanie przez –1 zmieniamy znaki wszystkich współczynników kombinacji, co jest równoważne zmianie orientacji pęku lub konturu.

Przykładowo, dla zbioru gałęzi $\{1, 2, 4, 6\}$, który jest zarazem pękiem i konturem, przy zaznaczonej na rys. 1 orientacji pęku P_1 i dla prawoskrętnego obiegu konturu zachodzi:

NPK: $u_1 - u_2 + u_4 + u_6 = 0$ PPK: $i_1 - i_2 + j_4 - i_6 = 0$

Uwaga

Specyfika rozpatrywanego obwodu umożliwia jego rozwiązanie (obliczenie nieznanych prądów lub/i napięć gałęziowych na podstawie następujących, prostych równań:

$$i_{6} = j_{3} + j_{4}$$

$$i_{1} = i_{2} + j_{3}$$

$$u_{1} - u_{2} + e_{5}
ight\} e_{1} - R_{1}(i_{2} + j_{3}) - R_{2}i_{2} + e_{5} = 0 \quad /\text{NPK dla } \{1, 2, 5\}/$$

$$i_{2} = \frac{e_{1} + e_{5} - R_{1}j_{3}}{R_{1} + R_{2}}, \quad i_{1} = \frac{e_{1} + e_{5} + R_{2}j_{3}}{R_{1} + R_{2}}$$

$$i_{5} = i_{2} + j_{4}$$

$$i_{R_{6}} = i_{6} - j_{6} = j_{3} + j_{4} - j_{6}$$

Ponadto:

$$u_{6} = R_{6}i_{R_{6}} = R_{6}(j_{3} + j_{4} - j_{6})$$

$$u_{4} = e_{5} - u_{6} = e_{5} + R_{6}(j_{6} - j_{3} - j_{4})$$

$$u_{j_{3}} = u_{3} - R_{3_{j_{3}}} = u_{4} - R_{2}i_{2} = u_{4} - R_{2}i_{2}$$

$$u_{j_{3}} = e_{5} + R_{6}(j_{2} - j_{3} - j_{4}) - \frac{R_{2}(e_{1} + e_{5} - R_{1j_{3}})}{R_{1} + R_{2}}$$

Komentarz

Pomijając szczegóły wywodów można stwierdzić, że prawa Kirchhoffa mają naturalną motywację polową, przynajmniej dla obwodów rezystancyjnych (elementy *R* i źródła): PPK wynika z warunku ciągłości prądu,

$$\oint_{\Sigma} \overline{J} \cdot \overline{d\sigma} = 0,$$

NPK — z warunku bezwirowości,

$$\oint_K \overline{E} \cdot \overline{dl} = 0.$$

Można wykazać, że maksymalna liczba **niezależnych** równań PPK wynosi d = w - 1, maksymalna liczba niezależnych równań NPK wynosi a = g - d = g - w + 1, gdzie w — liczba węzłów rozpatrywanego obwodu.

W powyższym przykładzie: g = 6, $w = 4 \rightarrow d = 3$, a = 3 (trzy niezależne pęki i trzy niezależne kontury).

Moc ____

Moc, czyli szybkość zmian energii jest wielkością przypisaną dowolnemu elementowi, lub dowolnej gałęzi obwodu elektrycznego:

$$p_k(t) = \frac{dw_k}{dt} = u_k(t)i_k(t) \left[\mathbf{W} \right] = \begin{cases} u_k(i_k) \cdot i_k \\ u_k \cdot i_k(u_k) \end{cases}$$

Wielkość tak określona może być zarówno:

- mocą energii pobieranej przez gałąź (mocą pobieraną), gdy zwroty napięcia i prądu są przeciwne ("orientacja odbiornikowa"), jak i
- mocą energii oddawanej (mocą oddawaną), gdy zwroty są zgodne ("orientacja nadajnikowa").

 $p = p_{pob} = u(t)i(t)$ $p' = p_{odd} = u'(t)i(t)$ p'(t) = -p(t) $p_{odd} = ui = (e - Ri)i = ei - Ri^{2} = -p_{pob}, \quad p_{pob} = Ri^{2} - ei$ $u = e^{i}$

Źródłom napięcia i prądu przypisujemy zazwyczaj moce oddawane;

 $p_e = ei_e, \quad p_j = u_j j$

Elementom pasywnym przypisujemy moce pobierane, dla R:

 $p_R = ui = Ri^2 = Gu^2 = p_{pob}$

 $p_R(t) \ge 0$ — rozpraszanie energii

Uwaga

Jeśli obwód zawiera więcej niż jedno źródło, każda z mocy może być dodatnia lub ujemna (interpretacja oczywista).

Twierdzenie. Można wykazać, że suma mocy oddawanej przez źródła jest równa sumie mocy pobieranych przez elementy pasywne.

Dowód

Dowód opiera się wyłącznie na prawach Kirchhoffa, czyli zależności $u_k(i_k)$ lub $i_k(u_k)$ mogą być dowolne (na przykład nieliniowe).

Przykład

(oddawane)
$$p_e + p_j = ei_e + u_j j =$$

= $ei_1 + u_2(i_2 - i_1) =$
= $(u_2 + u_1)i_1 + u_2i_2 - u_2i_1 =$
= $u_1i_1 + u_2i_2 = p_1 + p_2$ (pobierane)

Energia (oddawana lub pobierana):

• w przedziale czasu (t_1, t_2), $t_2 > t_1$

$$\Delta W = \begin{cases} \int_{t_1}^{t_2} p(t)dt = \int_{t_1}^{t_2} e(t)i_e(t) & \text{lub} & \int_{t_1}^{t_2} u_j(t)j(t)dt \\ \int_{t_1}^{t_2} u(t)i(t)dt = R \int_{t_1}^{t_2} i^2(t)dt = G \int_{t_1}^{t_2} u^2(t)dt & /R/t \end{cases}$$

jak widać, $\Delta W_R > 0$.

• w przedziale czasu (0, t), t > 0

 $W_R(0,t) = R \int_0^t i^2(\tau) d\tau = G \int_0^t u^2(\tau) d\tau \quad \text{funkcja rosnąca, bo jej pochodna (moc)} > 0$

Niech $i(t) = 2e^{-t} - 4$ (< 0)

$$W_R(0,t) = R \int_0^t (2e^{-\tau} - 4)^2 d\tau = R \int_0^t (4e^{-2\tau} - 16e^{-\tau} + 16) d\tau = \dots$$
$$= R(16t - 18 + 2e^{-2t} + 16e^{-t}) \rightarrow 16t - 18, \quad W_R(0,0) = 0$$

Przykład: analiza obwodu rezystancyjnego

Według PPK i NPK ułożymy niezbędne równania, obliczymy niektóre prądy gałęziowe oraz moce oddawane przez źródła.

A. Ponieważ d = w - 1 = 3 - 1 = 2, możemy ułożyć tylko dwa niezależne równania PPK (dla P_2 i P_3), przy czym jeden z pięciu prądów gałęziowych (g = 5) jest dany (j)

$$P_2: \quad i_2 + i_4 - i_1 - j = 0 \to i_2 = i_1 - i_4 + j$$

$$P_3: \quad i_4 - i_3 - j = 0 \to i_3 = i_4 - j$$
(1)

Z kolei, układamy dwa równania NPK (dla K_1 i K_3), z zastosowaniem zależności u(i) oraz uwzględniając związki (1). Niewiadomymi w równaniach NPK będą więc prądy gałęziowe i_1 , i_4 :

$$K_1: \quad R_1 i_1 + R_2 (i_1 - i_4 + j) - e = 0$$

$$K_3: \quad R_3 (i_4 - j) + R_4 i_4 - R_2 (i_1 - i_4 + j) = 0$$

Przyjmujemy parametry: $R_1 = 3\Omega$, $R_2 = 6\Omega$, $R_3 = 4\Omega$, $R_4 = 8\Omega$ i po uporządkowaniu otrzymujemy:

$$9i_1 - 6i_4 = e - 6j$$

 $-6i_1 + 18i_4 = 10j$

Rozwiązanie równań (w postaci macierzowej):

$$\begin{bmatrix} i_1 \\ i_4 \end{bmatrix} = \begin{bmatrix} 9 & -6 \\ -6 & 18 \end{bmatrix}^{-1} \begin{bmatrix} e - 6j \\ 10j \end{bmatrix} = \frac{1}{1,62 - 3,6} \begin{bmatrix} 18 & 6 \\ 6 & 9 \end{bmatrix} \frac{e - 6j}{10j}$$

Ostatecznie:

$$\begin{bmatrix} i_1 \\ i_4 \end{bmatrix} = \begin{bmatrix} \frac{1}{7}e - \frac{8}{21}j \\ \frac{1}{21}e + \frac{3}{7}j \end{bmatrix}$$
$$i_e = i_1, \quad u_j = u_4 = R_4i_4 = \frac{40}{7}j + \frac{8}{21}e$$

Przyjmując e = 42V, j = 7A mamy:

$$i_e = \frac{42}{7} - 7 \cdot \frac{8}{21} = \frac{10}{3} [A]$$

$$u_4 = u_j = \frac{8}{21} \cdot 42 + 7 \cdot \frac{24}{7} = 40 [V]$$

Moce oddawane przez źródła wynoszą:

$$p_e = ei_e = 42 \cdot \frac{10}{3} = 140 \left[W \right]$$
$$p_j = u_j j = 40 \cdot 7 = 280 \left[W \right]$$

Uwaga

Łatwo zauważyć, że wielkości i_e oraz u_j są **kombinacjami liniowymi** wymuszeń e oraz j o współczynnikach: G_{ab} , H oraz R_{cd} , H':

$$\begin{split} i_e &= G_{ab}e + Hj; \quad G_{ab} = \frac{1}{7}S, \quad H = -\frac{8}{21} \left[A/A \right] \\ u_j &= R_{cd}j + H'e; \quad R_{cd} = \frac{24}{7}\Omega, \quad H' = \frac{8}{21} \left[V/V \right] = -H(!) \end{split}$$

gdzie:

 G_{ab} — konduktancja zastępcza od strony końcówek *a, b* po upasywnieniu obwodu ($j \rightarrow$ przerwa)

 R_{cd} — rezystancja zastępcza od strony końcówek
 c, d po upasywnieniu obwodu ($e \rightarrow$ zwarcie)

H i *H*′ — transmitancje (prąd/prąd i napięcie/napięcie)

Ilustracja

$$i_{e} = i_{e}^{(e)} + i_{e}^{(j)}$$

$$u_{j} = u_{j}^{(j)} + u_{j}^{(e)}$$

$$p_{e} = ei_{e}^{(e)} + ei_{e}^{(j)} = G_{ab}e^{2} + ei_{e}^{(j)}$$

$$p_{j} = ju_{j}^{(j)} + ju_{j}^{(e)} = R_{bc}j^{2} + ju_{j}^{(e)}$$

Twierdzenie

$$ei_e^{(j)} + ju_j^{(e)} = 0$$

B. Alternatywnie, jako niewiadome można przyjąć napięcia gałęziowe $u_1 \div u_4$, wykorzystując dwa niezależne równania NPK (a = g - w + 1 = 4 - 3 + 1 = 2):

$$K_1: \quad u_1 + u_2 - e = 0 \to u_1 = e - u_2$$

$$K_2: \quad u_2 - u_3 - u_4 = 0 \to u_4 = u_2 - u_3$$

W równaniach PPK (dla pęków P_2 i P_3) zapisujemy prądy gałęziowe, wyrażone od razu w funkcji napięć u_2 i u_3 :

$$P_2: -G_1(e - u_2) + G_2u_2 + G_4(u_2 - u_3) - j = 0$$

$$P_3: G_4(u_2 - u_3) - G_3u_3 - j = 0 \quad \cdot / -1/; \quad G_k = \frac{1}{R_k}$$

Po uporządkowaniu i zmianie znaków w drugim równaniu otrzymujemy:

$$\begin{bmatrix} G_1 + G_2 + G_4 & -G_4 \\ -G_4 & G_3 + G_4 \end{bmatrix} \begin{bmatrix} u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} j + G_1 e \\ -j \end{bmatrix}$$

$$G_1 + G_2 + G_4 = \frac{1}{3} + \frac{1}{6} + \frac{1}{8} = \frac{5}{8}S, \quad G_3 + G_4 = \frac{1}{4} + \frac{1}{8} = \frac{3}{8}S, \quad j + G_1 e = 7 + \frac{42}{3} = 21A$$

$$\begin{bmatrix} u_2 \\ u_3 \end{bmatrix} = \left(\frac{1}{8}\right)^{-1} \begin{bmatrix} 5 & -1 \\ -1 & 3 \end{bmatrix}^{-1} \begin{bmatrix} 21 \\ -7 \end{bmatrix} = \frac{8}{14} \begin{bmatrix} 3 & 1 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} 21 \\ -7 \end{bmatrix} = \cdots = \begin{bmatrix} 32 \\ -8 \end{bmatrix}$$

Dla porównania rezultatów w punktach A i B obliczymy napięcia u_2 i u_3 mając dane prądy: $i_1 = \frac{10}{3}$ A, $i_4 = 5$ A (pkt. A):

$$u_{2} = e - R_{1}i_{1} = 42 - 10 = 32 \left[V \right]$$

$$u_{3} = R_{3}i_{3} = R_{3}\left(i_{1} - \frac{u_{2}}{R_{2}}\right) = 4\left(\frac{10}{5} - \frac{32}{6}\right) = -8 \left[V \right]$$

Tor długi jednorodny z wymuszeniem stałym

Dotychczas rozpatrywano tylko obwody rezystancyjne z parametrami skupionymi.

Obecnie — najprostszy przykład obwodu z parametrami **rozłożonymi**. W jego opisie pojawia się jedna zmienna, określająca położenie (x), a zatem: i = i(x), u = u(x).

Niezależność wymuszenia od czasu (napięcie źródłowe ε [V] = const lub prąd źródłowy j = const) skutkuje tym, że również odpowiedź i = i(x) oraz u = u(x) nie jest funkcją czasu.

W rzeczywistości, w modelach toru długiego **muszą** wystąpić zarówno jednostkowe parametry rezystancyjne: $R_0 \left[\Omega/m\right]$ i $G_0 \left[S/m\right]$, jak również parametr indukcyjny $L_0 \left[H/m\right]$ i pojemnościowy $C_0 \left[F/m\right]$, jednak w przypadku wymuszenia stałego w **stanie ustalonym** nie odgrywają one żadnej roli.

Można je wyeliminować z modelu, pozostaje więc:

 $R_0 dx$ — elementarna oporność "wzdłużna" (dot. obydwu przewodników linii 2-przewodowej)

 $G_0 dx$ — elementarna przewodność "poprzeczna" (dotyczy niedoskonałej izolacji miedzy przewodami)

NPK:
$$u(x) - u(x + dx) = (R_0 dx)i(x)$$

PPK: $i(x) - i(x + dx) = (G_0 dx)\underbrace{u(x + dx)}_{\cong u(x)}$: dx

$$-\frac{du}{dx} = R_0 i \qquad \left| \frac{d}{dx} - \frac{di}{dx} \right| = G_0 u$$

$$-\frac{d^2u}{dx^2} = R_0 \frac{di}{dx} = -R_0 G_0 u$$
$$\sqrt{R_0 G_0} \stackrel{\text{df}}{=} p \left[\mathbf{m}^{-1} \right]$$
$$\frac{d^2u}{dx^2} - p^2 u = 0$$

Analogicznie, na skutek symetrii równań:

$$\frac{d^2i}{dx^2} - p^2i = 0$$

Równanie charakterystyczne w obydwu przypadkach:

$$\lambda^2 - p^2 = 0 \rightarrow \lambda_{1,2} = \pm p = \pm \sqrt{R_0 G_0}$$
, a zatem

$$u(x) = B_1 e^{-px} + B_2 e^{px}$$

$$i(x) = A_1 e^{-px} + A_2 e^{px} = -\frac{1}{R_o} \frac{d}{dx} [B_1 e^{-px} + B_2 e^{px}]$$

Oznaczając $\frac{p}{R_o} = \sqrt{\frac{G_o}{R_o}} = \frac{1}{\rho}, \ \rho = \sqrt{\frac{R_o}{G_o}} \left[\Omega\right]$ otrzymujemy $i(x) = \frac{B_1}{\rho}e^{-px} - \frac{B_2}{\rho}e^{px}$

Stałe B_1 i B_2 wynikają z warunków brzegowych (na początku linii i na jej końcu, czyli dla x = 0 oraz x = l). W szczególności dla linii zwartej ($u(l) = 0 \equiv R_{ab} = 0$):

$$|x = 0| \quad B_1 + B_2 = u(0) = E$$

$$|x = l| \quad B_1 e^{-pl} + B_2 e^{pl} = u(l) = 0$$

$$\begin{bmatrix} B_1 \\ B_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ e^{-pl} & e^{pl} \end{bmatrix}^{-1} \begin{bmatrix} \varepsilon \\ 0 \end{bmatrix} = \frac{E}{e^{pl} - e^{-pl}} \begin{bmatrix} e^{pl} \\ -e^{-pl} \end{bmatrix}$$

A zatem, prąd na początku linii zwartej (x = 0):

$$i(0) = \frac{1}{\rho}(B_1 - B_2) = \frac{E}{\rho} \frac{e^{pl} + e^{-pl}}{e^{pl} - e^{-pl}} = \frac{E}{\rho} \frac{chpl}{shpl}$$

Jak widać, oporność wejściowa linii zwartej wynosi

$$R_z = \frac{u(0)}{i(0)} = \frac{E}{i(0)} = \rho thpl = \sqrt{\frac{R_o}{G_o}} th\left(\sqrt{R_o G_o}l\right)$$

Podobnie, można pokazać, że oporność wejściowa linii nieobciążonej ($i(l) = 0 \equiv R_{ob} = \infty$) wynosi:

$$R_o = \frac{\rho}{thpl} \quad (\to \infty \quad \text{gdy} \quad l \to 0)$$

W ogólnym przypadku (linia obciążona) stałe B_1 i B_2 spełniają warunki:

$$u(0) = E \to B_1 + B_2 = E$$

$$u(l) = R_{ob}i(l) \to B_1 e^{-pl} + B_2 e^{+pl} = R_{ob} \cdot \frac{1}{\rho} \left(B_1 e^{-pl} - B_2 e^{pl} \right)$$

Po obliczeniu B_1 i B_2 otrzymujemy zależności u(x) oraz i(x), a także oporność wejściową linii obciążonej.

Problem (praca kontrolna)

Rozkłady napięcia u(x) oraz prądu i(x) wzdłuż toru opisują takie same równania, stałe B_1 i B_2 liczymy na podstawie warunków brzegowych:

$$u(0) = B_1 + B_2 = E$$

$$i(l) = \frac{B_1}{\rho} e^{-pl} - \frac{B_2}{\rho} e^{pl} = -j$$

Temat: Na podstawie rozkładów u(x), i(x) zbadać moc rozpraszaną w linii oraz moce oddawane przez źródła *E* i *j*.

Przykłady analizy obwodów rezystancyjnych ze źródłami sterowanymi _

Do zbioru niewiadomych należy zakwalifikować wielkości **sterujące** (prądy lub/i napięcia). Układamy niezbędne równania PPK i NPK, a po ich rozwiązaniu liczymy pożądaną odpowiedź obwodu.

Uwaga

Aby rozwiązanie było niezerowe, obwód musi zawierać co najmniej jedno źródło **nieza- leżne**.

Przykład 1.

$$R_1 = R_2 = R_3 = 2\Omega$$

$$R_4 = 4\Omega$$

ρ, *j* — dane

 $\rho \neq 6V/A$

Obliczyć u

PPK:

 $i_2 = j - i_1;$ $i_4 = j - i_3$

NPK:

$$\begin{split} R_1 i_1 - R_2 (j - i_1) + \rho i_3 &= 0 \rightarrow i_1 = \frac{R_2 j - \rho i_3}{R_1 + R_2} \\ R_3 i_3 - \rho i_3 - R_4 (j - i_3) &= 0 \rightarrow i_3 = \frac{R_4 j}{R_3 + R_4 - \rho} = \frac{4}{6 - \rho} j \\ i_1 &= \frac{12 - 6\rho}{24 - 4\rho} j = \frac{6 - 3\rho}{12 - 2\rho} j \end{split}$$

$$u = R_1 i_1 + R_3 i_3 = \left(\frac{6-3\rho}{6-\rho} + \frac{8}{6-\rho}\right) j = \frac{14-3\rho}{6-\rho} j = R_{ab} j$$
$$R_{ab} = \frac{3\rho - 14}{\rho - 6}$$

Jak widać, $R_{ab} < 0$ dla $\rho \in \left(\frac{14}{3}, 6\right) V/A$.

Przykład 2.

 $R_1=R_2=R_3=2\Omega$

 $R_4=4\Omega$

e, ρ , γ — dane

NPK:

$$R_4 i_4 + \rho i_3 - R_3 i_3 = 0 \rightarrow i_3 = \frac{R_4}{R_3 - \rho} i_4$$

 $R_4 i_4 + \rho i_3 + R_1 i_1 = e$

PPK (bilans prądów pęku *P*):

$$i_3 + i_4 - i_1 - \gamma R_4 i_4 = 0$$

Po prostych przekształceniach mamy:

$$i_{1} = i_{3} + (1 - \gamma R_{4})i_{4} = \left(\frac{R_{4}}{R_{3} - \rho} + 1 - \gamma R_{4}\right)i_{4}$$
$$\left(R_{4} + \frac{\rho R_{4}}{R_{3} - \rho} + \frac{R_{1}R_{4}}{R_{3} - \rho} + R_{1} - \gamma R_{4}R_{1}\right)i_{4} = e$$

Jak widać, parametr R_2 nie wpływa na wynik, $i_4 \neq f(R_2)$

$$\left(4 + \frac{4\rho}{2 - \rho} + \frac{8}{2 - \rho} + 2 - 8\gamma\right)i_4 = e = \left(\frac{20 - 2\rho}{2 - \rho} - 8\gamma\right)i_4$$

$$2 - \rho$$

$$i_4 = \frac{2 - \rho}{20 - 2\rho - 8\gamma(2 - \rho)}e^{-\frac{1}{2}}$$

$$i = i_3 + i_4 = (1 + \frac{R_4}{R_3 - \rho})i_4 = \frac{6 - \rho}{2 - \rho}i_4$$

Ostatecznie,

$$i = \frac{6 - \rho}{20 - 2\rho + 8\gamma(\rho - 2)}e;$$
 $G_{ab} = \frac{6 - \rho}{20 - 2\rho + 8\gamma(\rho - 2)}$

Praca kontrolna

Obwód, jak w przykładzie 2., lecz zasilany prądem źródłowym *j* (zamiast *e*). Obliczyć R_{ab} i porównać z wyznaczoną odwrotnością konduktancji G_{ab}^{-1} .

Elementy geometrii obwodu

Badanie struktury geometrycznej obwodu (grafu) wraz z jej opisem algebraicznym umożliwia ustalenie liczby i "jakości" niezależnych równań PPK i NPK. Na wstępie, oprócz poznanych już konturu i pęku wprowadzimy pojęcia drzewa /D/ i antydrzewa /A/, odnoszące się zarazem do grafu i obwodu.

Drzewem grafu G nazywamy maksymalny podgraf grafu, nie zawierający konturów.

Antydrzewo jest dopełnieniem drzewa, A = G - D $(D \cup A = G)$.

{1,3} ani {1,2} nie są drzewami, gdyż nie są to podgrafy maksymalne

Twierdzenie 1. Dowolne drzewo grafu G zawiera wszystkie węzły, a liczba jego konarów (gałęzi drzewa) wynosi: d = w - 1, gdzie w — liczba węzłów grafu G.

Odcinając kolejno konary **skrajne** otrzymujemy w końcu pojedynczą gałąź z dwoma węzłami. Ponieważ przy każdym odcięciu liczba gałęzi oraz liczba węzłów maleje o 1, zachodzi:

 $d - 1 = w - 2 \rightarrow d = w - 1$, (c.b.d.u.)

Tym samym, liczba strun (gałęzi antydrzewa) wynosi a = g - d = g - w + 1, g — liczba gałęzi grafu.

Dowolna struna s_{μ} antydrzewa wraz z niektórymi (w szczególności z wszystkimi) konarami drzewa tworzy jeden kontur, $K_{\mu} \in \{s_{\mu} \cup D\}$, zwany konturem podstawowym.

I analogicznie:

Dowolny konar k_{ν} drzewa wraz z niektórymi (w szczególności — z wszystkimi strunami antydrzewa tworzy jeden pęk $P_{\nu} \in \{k_{\nu} \cup A\}$, zwany **pękiem podstawowym**.

 $K_6 = \{6, 1, 2, 5\} = \{6 \cup D_1\}$ $K_4 = \{4, 1, 2\} \in \{4 \cup D_1\}$ $P_2 = \{2, 3, 4, 6\} = \{2 \cup A_1\}$ $P_3 = \{3, 1, 2\} \in \{3 \cup A_4\}, A_4 = \{1, 2, 6\}$

Twierdzenie 2. Dowolny kontur K ma co najmniej jedną gałąź wspólną z dowolnym antydrzewem A, $K \cup A \neq \emptyset$. (W przeciwnym razie $K \in D = G - A$, wbrew definicji drzewa.)

I analogicznie,

Twierdzenie 3. Dowolny pęk P ma co najmniej jedną gałąź wspólną z dowolnym drzewem D, $P \cup D \neq \emptyset$. (W przeciwnym razie $P \in A = G - D$, co zaprzecza warunkowi $P_v \in \{k_v \cup A\} \rightarrow A \in P_v$.)

Twierdzenie 4. Dowolny kontur K i dowolny pęk P mają parzystą liczbę (w tym — zero) gałęzi wspólnych, n = 2m. (Uzasadnienie według rysunków.)

 $K_1 \cap P = \{2, 3\}; n_1 = 2$

 $K_2 \cap P = \varnothing; \quad n_2 = 0$

 $K_3 \cap P = \{1, 2, 3, 4\}; n_3 = 4$

Równania PPK dla pęków podstawowych (w liczbie d = w - 1) stanowią zbiór **równań niezależnych** (każde z nich zawiera prąd konara k_v , który wyznacza pęk $P_n u$ i nie występuje w pozostałych pękach).

Równania NPK dla konturów podstawowych (w liczbie a = g - w + 1) stanowią zbiór równań niezależnych (w każdym z nich — napięcie struny), która wyznacza odpowiedni kontur, K_{μ} Równania PPK i NPK:

$$\sum_{k=1}^{g} \alpha_{\nu k} i_{k} = 0; \quad \sum_{k=1}^{g} \beta_{\mu k} u_{k} = 0$$

$$\nu = 1, 2, \dots, d; \quad \mu = 1, 2, \dots, a$$

można zapisać w postaci macierzowej: Ai = 0; Bu = 0

$$i = \begin{bmatrix} i_1 \\ i_2 \\ \vdots \\ i_g \end{bmatrix}; \quad u = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_g \end{bmatrix}; \quad \substack{|dxg| \\ A = \{\alpha_{\nu k}\}; \\ \pm 1\nu^0 \\ \pm 1\nu^0 \\ \end{bmatrix}$$

Jeśli konarom wybranego drzewa przyporządkujemy wskaźniki: 1, 2, ..., d, zaś strunom antydrzewa wskaźniki: d + 1, d + 2, ..., d + a = g, a ponadto przyjmiemy orientację pęków (konturów) — zgodną z orientacją konarów (strun), jak na rysunkach 5 i 4, to w macierzach *A* i *B* wystąpią podmacierze jednostkowe, odpowiednio:

$$1_{\alpha} = \begin{bmatrix} 1 & & 0 \\ & 1 & & \\ & & \ddots & \\ 0 & & & 1 \end{bmatrix}, \quad 1_{a} = \begin{bmatrix} 1 & & 0 \\ & 1 & & \\ & & \ddots & \\ 0 & & & 1 \end{bmatrix}$$

a oprócz nich podmacierze P/dxa/ i Q/axd/. P reprezentuje obecność strun w pękach podstawowych, wyznaczonych przez odpowiednie konary, Q — obecność konarów w konturach podstawowych, wyznaczonych przez odpowiednie struny.

$$A = \begin{bmatrix} 1_d | P \end{bmatrix} \qquad B = \begin{bmatrix} Q | 1_a \end{bmatrix}$$

konary struny konary struny

Drzewo zaznaczono linią grubą

$$A = \begin{bmatrix} 1 & 0 & 0 & -1 & 0 & 1 \\ 0 & 1 & 0 & -1 & -1 & 1 \\ 0 & 0 & 1 & 0 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 1_3 | P \end{bmatrix}$$
macierz incydencyjna pęków podstawowych
$$B = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ -1 & -1 & 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} Q | 1_s \end{bmatrix}$$
macierz incydencyjna konturów podstawowych

Jak łatwo zauważyć, $Q = -P^t$ ("t" — transpozycja), co można wykazać dla dowolnego grafu. Tak więc, współczynniki w równaniach NPK dla zbioru konturów podstawowych można łatwo powiązać ze współczynnikami równań PPK dla zbioru pęków podstawowych (i na odwrót).

Tym samym iloczyn macierzy AB^t jest macierzą zerową:

$$AB^{t} = \begin{bmatrix} 1_{d} | P \end{bmatrix} \begin{bmatrix} \frac{Q^{t}}{1_{a}} \end{bmatrix} = Q^{t} + P = 0 \quad /dxa/ \quad (1)$$

Powyższa własność ($AB^t = 0$ lub $BA^t = 0$) dotyczy nie tylko macierzy incydencyjnych pęków i konturów podstawowych, lecz również macierzy dla dowolnego zbioru pęków i konturów, $\overline{A} = \{a_{\nu k}\}$; $\overline{B} = \{b_{\mu k}\}$, k = 1, 2, ..., g **zorientowanych**.

Oznaczając $\overline{AB}^t \stackrel{\text{df}}{=} C = \{C_{\nu\mu}\}$, zauważmy że $C_{\nu\mu}$ jest iloczynem skalarnym "wektorów" wierszowych \overline{A}_{nu} oraz \overline{B}_{μ} , których "składowymi" są odpowiednio elementy $a_{\nu k}$ oraz $b_{\mu k}$, k = 1, 2, ..., g (transpozycja macierzy \overline{B}).

Jak wiadomo, gałęzie wspólne pęku P_{ν} oraz konturu K_{μ} tworzą m par, m = 0, 1, 2, ...Łatwo zauważyć, że zgodności orientacji każdej pary gałęzi z orientacją pęku towarzyszy niezgodność orientacji tej pary z orientacją konturu (i na odwrót), czyli:

 $a_{\nu k_1}b_{\mu k_1} + a_{\nu k_2}b_{\mu k_2} = (\pm 1)(\pm 1) + (\pm 1)(\pm 1) = 0,$

gdzie parę tworzą gałęzie k_1 i k_2 .

Przykładowo dla pęku $P \stackrel{\text{df}}{=} P_1$ i konturu K_3 , które przedstawia rys. 7, zachodzi:

$$c_{13} = \sum_{k=1}^{g} a_{1k} b_{3k} = \underbrace{[(+1)(+1) + (+1)(-1)]}_{\text{para } 1,2} + \underbrace{[(-1)(-1) + (+1)(-1)]}_{\text{para } 3,4} = (1-1) + (1-1) = 0$$

Dwie metody analizy obwodu — motywacja __

1) Ze względu na podział macierzy A i B na dwie podmacierze, odpowiadające konarom (1_{*d*} i Q) oraz strunom (P i 1_{*a*}) musimy wyodrębnić zbiór prądów konarowych (wektor i_D) oraz prądów strunowych (wektor i_A).

Analogicznie — zbiór napięć konarowych (wektor $u_{\mathcal{D}}$) i strunowych (wektor u_A).

W związku z tym, prawa Kirchhoffa przyjmują postać:

PPK:
$$Ai = [1_d | P] \left[\frac{i_{\mathcal{D}}}{i_A} \right] = 0$$
 (2)

NPK:
$$Bu = [Q|1_a] \left[\frac{u_{\mathcal{D}}}{u_A} \right] = 0$$
 (3)

Po rozwinięciu (2) i (3) widać, że prądy konarowe (napięcia strunowe) są kombinacjami liniowymi prądów strunowych (napięć konarowych):

$$i_{\mathcal{D}} = -Pi_A = Q^t i_A \tag{4}$$

$$u_A = -Qu_\mathcal{D} = P^t u_\mathcal{D} \tag{5}$$

Tym samym, rozwiązanie obwodu sprowadza się do obliczenia prądów strunowych (jeśli jako niewiadome przyjmiemy prądy gałęziowe) lub napięć konarowych (jeśli jako niewiadome przyjmiemy napięcia gałęziowe). W wyniku eliminacji $i_{\mathcal{D}}$ pozostaje do rozwiązania układ a = g - w + 1 równań w **metodzie prądów strunowych**, w wyniku eliminacji u_A — układ d = w - 1 równań w **metodzie napięć konarowych**.

Oczywiste jest, że w obydwu metodach wykorzystujemy zarówno równania NPK jak PPK, a ponadto zależności napięciowo-prądowe w metodzie prądów strunowych lub prądowo-napięciowe w metodzie napięć konarowych.

2) Równania PPK i NPK oraz własność (1) skutkują odpowiednio wnioskami:

$$i = B^{t}i_{A}$$

$$/g \times 1/ \quad /g \times a/; \ /a \times 1/$$
(6)

$$u = A^{t} u_{\mathcal{D}}$$

$$/g \times 1 / /g \times d /; /d \times 1 /$$
(7)

które można uznać za alternatywne formy PPK i NPK.

3) Przyjmujemy, że dowolna gałąź obwodu (wskaźnik k = 1, 2, ..., g) oprócz elementu $R_k(G_k)$ może zawierać źródło napięcia e_k oraz źródło prądu j_k — rysunek.

Zakładamy przeciwne orientacje prądu gałęziowego i_k oraz napięcia gałęziowego u_k , a także typowe orientacje e_k i j_k . Te ostatnie można uznać za odpowiadające rzeczywistości, jeśli dobierzemy właściwy znak napięcia lub/i prądu źródłowego.

Oznaczenia pomocnicze:

$$\overline{e_k} = e_k - R_k j_k
\overline{j'_k} = j_k - G_k e_k
u_k(i_k) : u_k = u'_k - e_k = R_k i'_k - e_k = R_k (i_k + j_k) - e_k = R_k i_k - (e_k - R_k j_k)
u_k = R_k i_k - \overline{e_k}
i_k(u_k) : i_k = i'_k - j_k = G_k u'_k - j_k = G_k (u_k + e_k) - j_k = G_k u_k - (j_k - G_k e_k)
i_k = G_k u_k - \overline{j_k}$$

W postaci macierzowej:

$$u = Ri - \overline{e}, \text{ gdzie } \overline{e} = e - Rj$$

$$i = Gu - \overline{j}, \text{ gdzie } \overline{j} = j - Ge$$

$$R = \text{diag}\{R_1, R_2, \dots, R_g\}; \quad G = \text{diag}\{G_1, G_2, \dots, G_g\}$$

$$e = [e_1, e_2, \dots, e_g]^t; \quad j = [j_1, j_2, \dots, j_g]^t$$
(8)

4) Uwzględniając kolejno (3), (8) i (6) otrzymujemy:

$$Bu = B(Ri - \overline{e}) = BRB^t i_A - B\overline{e} = 0$$

czyli

$$R_p i_A = \overline{e}_p$$
 metoda prądów strun. (10)

gdzie:

$$R_p = BRB^t \tag{11}$$

$$\overline{e}_p = B(e - Rj) \tag{12}$$

5) Uwzględniając kolejno (2), (9) i (7), otrzymujemy

$$Ai = A(Gu - \overline{j}) = AGA^{t}u_{\mathcal{D}} - A\overline{j} = 0$$

czyli

$$G_p u_{\mathcal{D}} = \overline{j_p}$$
 metoda napięć konarowych (13)

gdzie:

$$G_p = AGA^t \tag{14}$$

$$\overline{j_p} = A\overline{j} = A(j - Ge) \tag{15}$$

 $R_{\it p}$ — macierz rezystancyjna konturów podstawowych

 G_p — macierz konduktancyjna pęków podstawowych

 $\overline{e_p}$ — zmodyfikowany wektor napięć źródłowych w konturach podstawowych

 $\overline{j_p}$ — zmodyfikowany wektor prądów źródłowych w pękach podstawowych

Dyskusja

1) W metodzie prądów strunowych (10): $R_k < \infty$, więc nie dopuszcza się rozwarcia. Tym samym, źródła prądu j_k nie można uznać za gałąź. Nie istniałaby wówczas zależność napięciowo-prądowa $u_k(i_k)$, czyli $u_k(-j_k)$.

Dopuszczalny jest element R_k jako gałąź ($e_k = 0$, $j_k = 0$, $u_k = R_k i_k$), a w szczególności — zwarcie ($R_k = 0$, $e_k = 0$, $j_k = 0$), a także element e_k ($R_k = 0$, $j_k = 0$).

2) W metodzie napięć konarowych (13): $G_k < \infty$, a więc nie dopuszcza się zwarcia. Tym samym, źródła napięcia e_k nie można uznać za gałąź. Nie istniałaby wówczas zależność prądowo-napięciowa $i_k(u_k)$, czyli $i_k(-e_k)$.

Dopuszczalny jest element G_k (gdy $e_k = 0$ i $j_k = 0$), a w szczególności — rozwarcie ($G_k = 0$), jak również element j_k (gdy $G_k = 0$, $e_k = 0$).

3) Macierze R_p i G_p są symetryczne:

 $R_p^{t} = (BRB^t)^t = (B^t)^t R^t B^t = BRB^t = R_p$

(*R* i *G* jako macierze diagonalne są oczywiście symetryczne).

4) Wyrażenia $R_k j_k$ oraz $G_k e_k$ oznaczają równoważne źródła napięcia i prądu:

 $i_k(u_k)$ — jednakowe,

 $u_k(i_k)$ — jednakowe.

5) Składowe wektorów *Be* oraz *Aj* stanowią sumy algebraiczne napięć źródłowych w odpowiednich konturach podstawowych oraz prądów źródłowych w odpowiednich pękach podstawowych. Można się przekonać, że ze znakami **plus** wystąpią te napięcia źródłowe (prądy źródłowe), których orientacje są **zgodne** z orientacją konturu (**pęku**). Orientacje konturu (pęku) identyfikujemy z orientacją odpowiedniego prądu strunowego (napięcia konarowego).

Powyższe dotyczy zarazem **równoważnych** źródeł napięcia i równoważnych źródeł prądu. Znaki minus na odwrót.

7) Analogiczne algorytmy można sformułować dla elementów macierzy G_p (kontury zastępujemy pękami, struny — konarami i na odwrót).

$$G_p = \{g_{ij}\}_{i,j=1,2,\dots,d}; \quad g_{ij} = A_i G(A_j)^t = \sum_{k=1}^g a_{ik} a_{jk} G_k$$

Gałęziami wspólnymi pęków P_i i P_j są te **struny**, które należą do obydwu pęków podstawowych, lub (co jest równoważne) — wyznaczają kontury, do których należą konary pęków P_i i P_j .

Ustalając znaki elementów G_{ij} wygodniej jest rozważyć orientacje konarów w tych konturach, niż badać orientacje pęków.

Znaki plus kładziemy, gdy orientacje konarów są zgodne, minus – gdy są niezgodne.

$$g_{ij} = g_{ji} = -(G_{s_2} + G_{s_3} + G_{s_1})$$

$$g_{jj} = G_j + G_{s_2} + G_{s_3} + G_{s_4} + G_{s_1}$$

$$g_{jn} = g_{nj} = +(G_{s_2} + G_{s_3} + G_{s_4})$$

Przykład 1.

Tylko jedna gałąź obwodu zawiera "komplet" elementów: $\{R_1, e_1, j_1\}$.

Przyjmujemy parametry:

 $R_1 = R_3 = R_4 = 3\Omega,$ $R_5 = R_6 = R_7 = 6\Omega,$ $e_1 = 4V,$ $e_2 = 6V,$ $j_1 = j_4 = 2A$

i w myśl algorytmu (10)÷(12) układamy wprost równania obwodu, opisujące wektor prądów strunowych $i_A = [i_5, i_6, i_7]^t$:

$$\begin{bmatrix} R_5 + R_1 & 0 & -R_1 \\ 0 & R_6 + R_3 + R_4 & R_3 + R_4 \\ -R_1 & R_3 + R_4 & R_7 + R_1 + R_3 + R_4 \end{bmatrix} \begin{bmatrix} i_5 \\ i_6 \\ i_7 \end{bmatrix} = \begin{bmatrix} -e_2 - e_1 + R_1 j_1 \\ -e_2 + R_4 j_4 \\ e_1 - R_1 j_1 + R_4 j_4 cr \end{bmatrix}$$
$$\begin{bmatrix} 9 & 0 & -3 \\ 0 & 12 & 6 \\ -3 & 6 & 15 \end{bmatrix} \begin{bmatrix} i_5 \\ i_6 \\ i_7 \end{bmatrix} = \begin{bmatrix} -4 \\ 0 \\ 4 \end{bmatrix} \text{ lub po uproszczeniu}$$

$$\begin{bmatrix} 3 & 0 & -1 \\ 0 & 4 & 2 \\ -1 & 2 & 5 \end{bmatrix} \begin{bmatrix} i_5 \\ i_6 \\ i_7 \end{bmatrix} = \frac{4}{3} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \quad \Delta = \det \quad R_p = 44$$

Dopełnienia algebraiczne: $\Delta_{11} = 16$, $\Delta_{12} = \Delta_{21} = -2$, $\Delta_{13} = \Delta_{31} = 4$, $\Delta_{22} = 14$, $\Delta_{23} = \Delta_{32} = -6$, $\Delta_{33} = 12$.

Wektor prądów strunowych:

$$i_A = R_p^{-1} e_p = \frac{1}{22} \begin{bmatrix} 8 & -1 & 2\\ -1 & 7 & -3\\ 2 & -3 & 6 \end{bmatrix} \begin{bmatrix} -1\\ 0\\ 1 \end{bmatrix} \cdot \frac{4}{3}$$

$$\begin{bmatrix} i_5\\i_6\\i_7 \end{bmatrix} = \frac{1}{33} \begin{bmatrix} -12\\-4\\8 \end{bmatrix}$$

Aby sprawdzić otrzymane rezultaty zastosujemy metodę napięć konarowych w wersji skróconej. Na wstępie, gałąź $\{R_1, e_1, j_1\}$ redukujemy do pary elementów: $G'_1 = \frac{1}{R_1} = \frac{1}{3}s$, $j'_1 = j_1 - G_1e_1 = \frac{2}{3}A$.

Dwukońcówkowy zbiór elementów (dwójnik) $\{R_3, R_4, j_4\}$ zastępujemy równoważną gałęzią $\{R_3 + R_4, R_4 j_4\} = \{6\Omega, 6V\}.$

Aby uniknąć wprowadzania dodatkowej niewiadomej i_{e_2} pomijamy pęk wyznaczony przez konar e_2 i układamy tylko dwa niezbędne równania PPK dla pęków podstawowych, jak na rysunku.

$$P': \frac{1}{3}v_{1} + \frac{1}{6}(v_{1} - v_{2}) + \frac{1}{6}(v_{1} - e_{2}) = \frac{2}{3}$$

$$P'': \frac{1}{6}(v_{2} - v_{1}) + \frac{1}{6}(v_{2} - 6) + \frac{1}{6}(v_{2} - e_{2}) = 0$$

$$e_{2} = 6V$$

$$\frac{2}{3}v_{1} - \frac{1}{6}v_{2} = \frac{2}{3} + 1 = 5/3 \quad |\cdot 6$$

$$-\frac{1}{6}v_{1} + \frac{1}{2}v_{2} = 2$$

$$\begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix} = \begin{bmatrix} 4 & -1 \\ -1 & 3 \end{bmatrix}^{-1} \cdot \begin{bmatrix} 10 \\ 12 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 30 + 12 \\ 10 + 48 \end{bmatrix} = \begin{bmatrix} \frac{42}{11} \\ \frac{58}{11} \end{bmatrix}$$

$$i_{5} = \frac{1}{6}(v_{1} - e_{2}) = \frac{1}{6} \cdot \frac{42 - 66}{11} = -\frac{12}{33}$$

$$i_{6} = \frac{1}{6}(v_{2} - e_{2}) = \frac{1}{6} \cdot \frac{58 - 66}{11} = -\frac{4}{33}$$

$$i_{7} = \frac{1}{6}(v_{2} - v_{1}) = \frac{1}{6} \cdot \frac{58 - 42}{11} = \frac{8}{33} \quad (jak wyżej)$$

Przykład 2.

Zgodnie z algorytmem metody napięć konarowych (13) \div (15) możemy zapisać od razu uporządkowany układ równań z niewiadomymi u_2 , u_3 , u_4 — składowymi wektora u_D :

$$\begin{bmatrix} G_1 + G_5 + G_6 & G_5 + G_6 & -(G_1 + G_6) \\ G_5 + G_6 & G_3 + G_5 + G_6 & -G_6 \\ -(G_1 + G_6) & -G_6 & G_4 + G_1 + G_6 \end{bmatrix} \begin{bmatrix} u_2 \\ u_3 \\ u_4 \end{bmatrix} = \begin{bmatrix} j_2 - j_1 \\ G_3 e_3 \\ j_1 \end{bmatrix}$$

Zakładając parametry: $R_1 = 3\Omega$, $R_3 = 4\Omega$, $R_4 = R_5 = R_6 = 6\Omega$, $j_1 = 1A$, $j_2 = 2A$, $e_3 = 8V$ mamy:

$$\begin{bmatrix} \frac{2}{3} & \frac{1}{3} & -\frac{1}{2} \\ \frac{1}{3} & \frac{7}{12} & -\frac{1}{6} \\ -\frac{1}{2} & -\frac{1}{6} & \frac{2}{3} \end{bmatrix} \begin{bmatrix} u_2 \\ u_3 \\ u_4 \end{bmatrix} = \frac{1}{12} \begin{bmatrix} 8 & 4 & -6 \\ 4 & 7 & -2 \\ -6 & -2 & 8 \end{bmatrix} \begin{bmatrix} u_2 \\ u_3 \\ u_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

 $\Delta=132$

$$\begin{bmatrix} u_2 \\ u_3 \\ u_4 \end{bmatrix} = \frac{12}{132} \begin{bmatrix} 52 & -20 & 34 \\ -20 & 28 & -8 \\ 34 & -8 & 40 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = \frac{2}{11} \begin{bmatrix} 26 & -10 & 17 \\ -10 & 14 & -4 \\ 17 & -4 & 20 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = \frac{2}{11} \begin{bmatrix} 23 \\ 14 \\ 29 \end{bmatrix}$$

Uwaga

Zastępując symetryczny "trójkąt" $\{R_4,R_5,R_6\}=\{6,6,6\}\,\Omega$ równoważną "gwiazdą"

 $\{R^\lambda,R^\lambda,R^\lambda\},$

gdzie $R^{\lambda} = \frac{1}{3}R^{\Delta} = 2\Omega$, otrzymujemy prostszy obwód:

Dla jedynej niewiadomej v:

$$\frac{1}{5}(v-3) + \frac{1}{6}(v-8) + 2 = 0$$

$$\frac{11}{30}v = \frac{3}{5} + \frac{8}{6} - 2 = -\frac{2}{30}$$

$$v = -\frac{2}{11}$$

Zastosowana transfiguracja zachowuje wartość prądów i_{e_1} , i_{e_3} , a także napięcie źródła prądu (u_2) .

$$u_2 = R^{\lambda} j_2 - v = 2j_2 - v = 4 + \frac{2}{11} = \frac{46}{11} [V]$$
 (jak wyżej)

Prądy w gałęziach trójkąta (obwód oryginalny) i_5 , i_6 , i_4 wynikają z obliczonych już napięć u_2 , u_3 , u_4 :

$$i_{4} = -G_{4}u_{4} = -\frac{1}{6} \cdot \frac{58}{11} = -\frac{29}{33} \left[A \right]$$

$$i_{5} = -G_{5}(u_{3} + u_{2}) = -\frac{1}{6} \cdot \frac{2(14 + 23)}{11} = -\frac{37}{33} \left[A \right]$$

$$i_{6} = G_{6}(u_{4} - u_{2} - u_{3}) = \frac{1}{6} \cdot \frac{2(29 - 23 - 14)}{11} = -\frac{8}{33} \left[A \right]$$

Na koniec, zostanie zilustrowana skrócona metoda prądów strunowych — 2 równania (dla konturów K_1 i K_6); $i_2 = j_2 = 2$ A.

$$K_1: 3i_1 + 4(i_1 - 2) + 6(i_1 - i_6 - 2) + 6(i_1 - i_6) = 3 - 8$$

$$K_6: 6i_6 + 6(i_6 - i_1) + 6(i_6 - i_1 + 2) = 0 \quad /: 6$$

$$19i_1 - 12i_6 = 3 - 8 + 8 + 12$$
$$-2i_1 + 3i_6 = -2$$

 $\begin{bmatrix} i_1\\i_6 \end{bmatrix} = \begin{bmatrix} 19 & -12\\-2 & 3 \end{bmatrix}^{-1} \begin{bmatrix} 15\\2 \end{bmatrix} = \frac{1}{33} \begin{bmatrix} 3 & 12\\2 & 19 \end{bmatrix} = \frac{1}{33} \begin{bmatrix} 21\\-8 \end{bmatrix}$

$\Delta=33$

Ponadto:

$$i_4 = i_1 - i_6 = \frac{21}{33} + \frac{8}{33} = \frac{29}{33}$$

 $u_4 = 6i_4 = \frac{58}{11}$ (jak wyżej)

Twierdzenie o źródle zastępczym (Thévenina i Nortona) _

Jak już wspomniano (przykład 1, str. 3?) dwójnikowi (**aktywnemu**), który zawiera elementy *R* i źródła niezależne, można przyporządkować **równoważną** gałąź 2-elementową (*e*, *R*), przy czym pojęcie **równoważności** należy rozumieć jako **identyczność** zależności u(i) lub i(u) dwójnika i gałęzi. W konkretnych, prostych przypadkach zbadanie zależności u(i) lub i(u) nie przysparza trudności.

Dla dowolnego, rezystancyjnego dwójnika aktywnego zachodzi, przy zgodnej orientacji napięcia i prądu:

$$u = \operatorname{const}_1[V] - \operatorname{const}_2[\Omega] \cdot i = c_1 - c_2 i.$$

Jak widać, $c_1 = u_{i=0}^{u} = u^{o}$, $c_2 = \frac{u}{i}|_{c_1=0} = R_{ab}$ (*a*, *b* — końcówki dwójnika).

Napięcie dwójnika w stanie bezprądowym (zwane napięciem **jałowym**) u^0 jest kombinacją liniową napięć i prądów źródłowych dwójnika, a więc jest to wielkość o charakterze źródłowym, $u^0 = e$.

Jeśli wszystkie źródła niezależne zostaną upasywnione (zwarcia zamiast źródeł napięcia i rozwarcia w miejsce źródeł prądu), wówczas $u^o = 0$ i gałąź równoważna zawiera tylko element $R = R_{ab}$.

Przykłady

Dwójnik aktywny:

 $u = -R_1i - R_3(i + j_2) + e_3 + e_2 = -(R_1 + R_3)i + (e_3 + e_2 - R_3j_2)$

Gałąź:

 $u = e - R_{ab}i$ $e = u^o = e_3 + e_2 - R_3j_2; \quad R_{ab} = R_1 + R_3$ Zrozumiałe jest, że R_2 nie ma wpływu na R_{ab} , ani na u^o .

(1)
$$u = e_2 - e_1 - R_1 i_1 - R_2 (i_1 + j_2) \rightarrow i_1 = \frac{e_2 - e_1}{R_1 + R_2} - \frac{R_2}{R_1 + R_2} j_2 - \frac{1}{R_1 + R_2} u$$

(2) $i = i_1 - G_3 u + j_3$
 $i(u) = \underbrace{\left(j_3 + \frac{e_2 - e_1}{R_1 + R_2} - \frac{R_2}{R_1 + R_2} j_2\right)}_{j = i^2} - \underbrace{\left(G_3 + \frac{1}{R_1 + R_2}\right)u}_{G_{ab}} = i^z - G_{ab} u$

Jak widać, zależność *i*(*u*) dwójnika ma analogiczną postać:

$$i = \operatorname{const}_1 \left[\mathbf{A} \right] - \operatorname{const}_2 \left[\mathbf{S} \right] \cdot u = i_{|_{u=0}} - G_{ab}u = i^z - G_{ab}u,$$

 i^z — prąd zwarcia

$$G_{ab} = \frac{1}{R_{ab}} = \frac{i}{u} | i^z = 0$$
 (napięcia i prądy źródłowe, upasywnione)

Porównując obydwie zależności,

$$/j, G/: \quad u = \frac{1}{G_{ab}}(i^z - i) = R_{ab}i^z - R_{ab}i = u^o - R_{ab}i$$
$$u^o = R_{ab}i^z$$
$$/e, R/: \quad u = u^o - R_{ab}i$$

Ilustrację graficzną zależności u(i) i zarazem i(u) dwójnika aktywnego w przypadku zgodnych orientacji u oraz i przedstawia rysunek:

 $u = u^o - R_{ab}i;$ tg $\alpha = mR_{ab}$

 $(i = i^z - G_{ab}u); \quad \operatorname{tg} \beta = nG_{ab}$

Reasumując, twierdzenie o źródle zastępczym można sformułować następująco:

Dowolny, rezystancyjny dwójnik aktywny (końcówki a, b), dla którego istnieje zależność u(i) (zależność i(u)) jest równoważny:

- gałęzi 2-elementowej /*e*, *R*/, gdzie $e = u^o = u|_{i=0}$,
 - *R* = *Rab* rezystancja dwójnika po upasywnieniu źródeł (tw. Thévenina).
- gałęzi 2-elementowej / *j*, *G*/, gdzie $j = i^z = i|_{u=0}$,

 $G = G_{ab} = 1/R_{ab}$ — konduktancja dwójnika po upasywnieniu źródeł (tw. Nortona).

Zastosowanie

W obwodzie można wyodrębnić dowolną gałąź G_k (końcówki a, b) i potraktować obwód jako jej połączenie z (dwukońcówkową) resztą obwodu — dwójnikiem D_k . Dwójnikowi D_k można przyporządkować równoważną gałąź (2-elementową) |e, R| lub |j, G|; $e = u^o$, $j = i^z$. Otrzymujemy uproszczony obwód $\{/e, R| \cup G_k\}$ lub $|j, G| \cup G_k\}$, zawierający tylko dwie gałęzie, który łatwo rozwiązać (obliczyć prąd i_k lub/i napięcie u_k).

obwód aktywny

Uwaga

Nic nie stoi na przeszkodzie, by twierdzenie zastosować dwukrotnie: dla dwójnika D_k oraz gałęzi G_k .

Przykład

 $R_1=4\Omega,\,R_2=4\Omega,\,R_3=8\Omega,\,R_4=2\Omega,\,R_5=6\Omega,\,j_1=3A,\,e_2=12A;$

Po **odcięciu** gałęzi $G=\{R_5,e_2\}$ liczym
y u^o oraz R_{ab} $(j_1 \rightarrow$ rozwarcie)

$$u^{o} = u_{1} - u_{3} = R_{1}i_{1} - R_{3}i_{3} = R_{1}\frac{R_{3} + R_{4}}{R_{1} + R_{2} + R_{3} + R_{4}} \cdot j_{1} - R_{3}\frac{R_{1} + R_{2}}{R_{1} + R_{2} + R_{3} + R_{4}} \cdot j_{1} = = \left(4 \cdot \frac{10}{18} - 8\frac{8}{18}\right) \cdot j_{1} = = -\frac{24}{18}j_{1} = -\frac{4}{3}j = -4\left[V\right] R_{ab} = \frac{(R_{1} + R_{3})(R_{2} + R_{4})}{R_{1} + R_{3} + R_{2} + R_{4}} = \frac{12 \cdot 6}{12 + 6} = 4\Omega$$

Obwód uproszczony (Thévenin)

$$i = \frac{e - e_2}{R_{ab} + R_5} = \frac{u^o - e_2}{R_{ab} + R_5} = \frac{-4 - 12}{4 + 6} = -1, 6A$$

Dla sprawdzenia wyniku posłużymy się tradycyjną metodą — prądów strunowych. $D=\{R_1,R_2,R_3\}; A=\{j_1,/e_2,R_5/,R_4\}$

$$\begin{cases} R_5 i + R_3 (i + i_4) + R_1 (i + i_4 - j_1) = e_2 \\ R_4 i_4 + R_2 (i_4 - j_1) + R_1 (i_4 + i - j_1) + R_3 (i_4 + i) = 0 \end{cases}$$

Po podstawieniu parametrów:

$$\begin{bmatrix} 18 & 12 \\ 12 & 18 \end{bmatrix} \begin{bmatrix} i \\ i_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \end{bmatrix} : 6$$
$$\begin{bmatrix} i \\ i_4 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 4 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 3 & -2 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 4 \end{bmatrix}$$
$$i = \frac{-8}{5} = -1, 6A \text{ (jak wyżej)}$$

Zastosowanie twierdzenia Nortona sprowadza się do obliczenia prądu zwarcia i^z oraz konduktancji G_{ab} dwójnika, którego źródła zostały upasywnione. Obwód uproszczony zawiera również dwie gałęzie: gałąź równoważną dwójnikowi D_k , /j, $G_{ab}/$, $j = i^z$ oraz gałąź G_k .

Przykładowo, dla rozpatrywanego obwodu, obliczenie prądu zwarcia jest jeszcze łatwiejsze, niż napięcia jałowego.

$$i^{z} = i_{2} - i_{1} = j_{1} \frac{R_{4}}{R_{2} + R_{4}} - j_{1} \frac{R_{3}}{R_{1} + R_{3}} = 3\left(\frac{2}{6} - \frac{8}{12}\right) = 1 - 2 = -1A = j$$

$$G_{ab} = \frac{1}{R_{ab}} = \frac{1}{4}S$$

metoda superpozycji:

$$i = j^{(j)} + i^{(e_2)} = j \frac{R_{ab}}{R_{ab} + R_5} - \frac{e_2}{R_{ab} + R_5} = -\frac{4}{10} - \frac{12}{10} = -1, 6A$$
 (jak wyżej)

Jak widzimy zastosowanie twierdzenia Thévenina lub Nortona daje efektywne analizy obwodu.

Inne zastosowanie twierdzeń

Bardzo naturalnym jest wykorzystanie twierdzenia o źródle zastępczym (w obydwu wersjach) w obwodzie, który zawiera pojedynczy element jakościowo inny, niż pozostałe (konserwatywny, nieliniowy, niestacjonarny).

Element ten można wyodrębnić (gałąź G_k), natomiast pozostałym elementom (dwójnik D_k) przyporządkować gałąź równoważną $/e, R_{ab}/$ lub $/j, G_{ab}/$ — jak na rysunku.

$$L\frac{di}{dt} + R_{ab}i = u^o; f(u) + G_{ab} \cdot u = i^z$$

Odkładając na później analizę obwodu z pojedynczym elementem konserwatywnym, rozważymy przypadek elementu nieliniowego, o charakterystyce:

i = f(u); f — funkcja jednoznaczna, na przykład:

$$i = \begin{cases} 0 & \text{dla } u \leq 0\\ \gamma u^2 & \text{dla } u > 0 \end{cases}$$

W myśl PPK zachodzi: $i + i_6 = j = i^z$

$$\gamma u^2 + G_{ab}u - i^z = 0$$

$$u_1 = \frac{1}{2\gamma} \left(-G_{ab} \right) + \sqrt{G_{ab}^2 + 4\gamma i^z} \right) > 0$$

Drugie rozwiązanie, $u_2 = \frac{1}{2\gamma}(-G_{ab} - \sqrt{\Delta}) < 0$ należy odrzucić.

Ilustracja graficzna rozwiązania:

Badając odpowiedź (prąd i napięcie) elementu nieliniowego o charakterystyce $i(u) = A(1 - e^{-\alpha u}), A > 0, \alpha > 0$ posłużymy się na odmianę twierdzeniem Thévenina i metodą graficzną. Wprawdzie dana zależność i(u) można przekształcić do postaci: $u(i) = \frac{1}{\alpha} \ln \frac{A}{A-i}$, ale zastosowanie metody graficznej tego nie wymaga. Wystarczy zinterpretować wykres zależności i(u) jako wykres u(i). Zachodzi:

$$R_{ab}i + u(i) = u^{\circ} \rightarrow f(i) = u^{\circ} - Ri = u(i)$$

Rozwiązanie stanowią współrzędne |U, I| punktu przecięcia prostej f(i) oraz charakterystyki u(i).

Addytywność mocy (twierdzenia Tallegena)

Suma mocy pobieranych (lub oddawanych) przez wszystkie gałęzie obwodu równa się zero:

$$\sum_{k=1}^{g} u_k i_k = u^T i = (B^T u_{\mathcal{D}})^T A^T i_A = u_{\mathcal{D}}^T B A^T i_A = 0$$

Odnosząc się do schematu dowolnej, k-tej gałęzi, mamy:

$$u_k i_k = u_k (i'_k - j_k) = u_k i'_k - P_{j_n}^{odd} = (u'_k - e_k) i'_k - P_{j_k}^{odd} = P_{R_k}^{pob} - P_{e_k}^{odd} - P_{j_n}^{odd}$$

$$\sum_{k=1}^{g} u_k i_k = 0 = \sum_{1}^{g} P_{R_k} - \sum_{1}^{g} P_{e_k} - \sum_{1}^{g} P_{j_k}$$
$$\sum_{k=1}^{g} P_{R_k}^{pob} = \sum_{k=1}^{g} P_{e_k}^{odd} + \sum_{k=1}^{g} P_{j_k}^{odd}$$

Przykład

$$u_{2} = u'_{2} = -u_{1}$$

$$P_{R_{1}} + P_{R_{2}} = u'_{1}i'_{1} + u'_{2}i'_{2} = (u_{1} + e_{1})i'_{1} + u_{2}i_{2} = e_{1}i'_{1} + u_{1}\underbrace{(i_{2} + j_{1})}_{i'_{1}} + u_{2}i_{2} = e_{1}i'_{1} - u_{2}i_{2} - u_{2}j_{1} + u_{2}i_{2} = e_{1}i'_{1} + u_{1}j_{1} = P_{e_{1}} + P_{j_{1}} \quad (\text{c.b.d.o})$$

Twierdzenie o wzajemności (odwracalności)

a) Rozpatrujemy parę obwodów rezystancyjnych, każdy z jednym źródłem napięcia.

Gałąź "1" (lub gałąź "2") ze źródłem napięcia *e* oraz gałąź "2" (lub gałąź "1") z badanym prądem i_2 (prądem i_1) traktujemy jako wyodrębnione z obwodu.

Zawsze możliwy jest taki wybór drzewa *D*, aby gałęzie 1,2 były strunami antydrzewa A = G - D.

Odpowiedź obwodu 12, badana metodą prądów strunowych:

$$R_p \begin{bmatrix} i_1 \\ i_2 \\ \vdots \\ i_a \end{bmatrix} = \begin{bmatrix} e \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$i_A = R_P^{-1} e_P, i_1 = \frac{1}{\Delta} \cdot \Delta_{11} e, \Delta = \det R_P, i_2 = \frac{1}{\Delta} \Delta_{21} e$$

Analogicznie, odpowiedź obwodu 21:

$$i'_{A} = R_{P}^{-1} \begin{bmatrix} 0\\ e\\ 0\\ \vdots\\ 0 \end{bmatrix}, \quad i'_{1} = \frac{1}{\Delta} \cdot \Delta_{12} e = i_{2}, \text{ bo } \Delta_{12=\Delta_{21}}$$

Tak więc, symetria macierzy R_P , identycznej dla obydwu obwodów skutkuje równością prądów i'_1 oraz i_2 .

Warto zastosować przekształcenie macierzy $R_P/a \times a/w$ macierz

$$r = \begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix}; \quad r_{21} = r_{12},$$

która wiąże bezpośrednio prądy i_1 , i_2 z napięciem źródłowym e (obwód 12):

 $\begin{bmatrix} r_{11} & r_{12} \\ r_{12} & r_{22} \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} e \\ 0 \end{bmatrix}$

$$i_A = \begin{bmatrix} \frac{i_{\alpha}}{i_{\beta}} \end{bmatrix}, \quad i_{\alpha} = \begin{bmatrix} i_1\\i_2 \end{bmatrix}, \quad i_{\beta} = \begin{bmatrix} i_3\\i_4\\\vdots\\i_a \end{bmatrix},$$

podobnie wektor napięć źródłowych:

$$e_P = \begin{bmatrix} e \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{e_\alpha}{0} \end{bmatrix}$$

oraz macierz R_P — na cztery odpowiednie bloki macierzowe:

$$R_P = \begin{bmatrix} r_{\alpha} & r_{\alpha\beta} \\ r_{\beta\alpha} & r_{\beta} \end{bmatrix}, \text{ otrzymujemy}$$

$$\begin{bmatrix} r_{\alpha} & r_{\alpha\beta} \\ R_{\beta\alpha} & r_{\beta} \end{bmatrix} \begin{bmatrix} \frac{i_{\alpha}}{i_{\beta}} \end{bmatrix} = \begin{bmatrix} \frac{e_{\alpha}}{0} \end{bmatrix}, \quad r_{\beta\alpha} = r_{\alpha\beta}^{T}$$

Po eliminacji i_{β} (drugie równanie):

$$i_{\beta} = -r_{\beta}^{-1}r_{\beta\alpha}i_{\alpha}$$

i podstawieniu do pierwszego, otrzymujemy

$$\left(r_{\alpha} - r_{\alpha\beta}r_{\beta}^{-1}r_{\alpha\beta}^{T}\right) \begin{bmatrix} i_{1} \\ i_{2} \end{bmatrix} = \begin{bmatrix} e \\ 0 \end{bmatrix} = r\begin{bmatrix} i_{1} \\ i_{2} \end{bmatrix}$$

Poszukiwana macierz $r/2 \times 2/$ jest symetryczna, co łatwo sprawdzić, licząc

$$t^T = r^T_{\alpha} - r_{\alpha\beta}(r^{-1}_{\beta})^T r^T_{\alpha\beta} = r.$$

Korzyść wynikająca z redukcji stopnia (drugi zamiast *a*-tego) jest oczywista. Aby skonstruować *r* należy jednak odwrócić macierz $r_{\beta}/(a-2) \times (a-2)/$.

Rezystancja zastępcza dwójnika

Opisaną metodą redukcji stopnia macierzy można wykorzystać również do obliczenia rezystancji zastępczej dwójnika o złożonej strukturze (obwód 12). Należy wyodrębnić element R_{11} macierzy R_P i potraktować go jako macierz jednoelementową, $\overline{r_{\alpha}} = [R_{11}]$.

Wówczas $i_{\alpha} = [i_1] = i_1$, a $\overline{r_{\beta}}$ ma wymiary $|a - 1| \times |a - 1|$.

Tak więc, rezystancja zastępcza dwójnika z końcówkami /1,1'/ wynosi:

$$R = R_{11} - \overline{r}_{1\beta}\overline{r}_{\beta}^{-1}\overline{r}_{1\beta}^{T}$$
, $r_{1\beta} - 1$ wiersz m. R_P bez R_{11} :

 $\overline{r}_{1\beta} = [R_{12}, R_{13}, \dots, R_{1a}]$

Alternatywnie, rezystancja (konduktancja) zastępcza wynika wprost z zależności $i_1(e)$, zawartej w równaniu metody prądów strunowych:

$$R = \frac{e}{i_1(e)} = \frac{e}{\frac{1}{\Delta} \cdot \Delta_{11}e} = \frac{\Delta}{\Delta_{11}},$$

 $G = \frac{\Delta_{11}}{\Delta}$

gdzie

 $\Delta = \det T_P$

 Δ_{11} — dopełnienie algebraiczne elementu /1, 1/.

Z koniecznością obliczenia wyznacznika stopnia *a* wiąże się większa uciążliwość tej metody w porównaniu z procedurą redukcji stopnia macierzy R_P .

Sformułowania dualne

Zarówno stwierdzenie o wzajemności, jak techniki obliczania konduktancji (rezystancji) zastępczej mają swoje analogiczne (dualne) odpowiedniki, które opierają się na metodzie napięć konarowych.

$$\begin{bmatrix} g_{11} & g_{12} \\ g_{12} & g_{22} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} j \\ 0 \end{bmatrix} \qquad u'_1 = u_2 \qquad \begin{bmatrix} g_{11} & g_{12} \\ g_{12} & g_{22} \end{bmatrix} \begin{bmatrix} u'_1 \\ u'_2 \end{bmatrix} = \begin{bmatrix} 0 \\ j \end{bmatrix}$$
$$g = g_\alpha - g_{\alpha\beta}g_\beta^{-1}g_{\alpha\beta}^T = g^T$$
$$g \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} j \\ 0 \end{bmatrix}$$

dwójnik:

$$G = \frac{j}{u_1(j)} = \frac{j}{\frac{1}{\Delta} \cdot \Delta_{11}j} = \frac{\Delta}{\Delta_{11}}, \quad \Delta = \det G_P$$
$$R = \frac{\Delta_{11}}{\Delta}$$

lub:

$$(G_{11} - \overline{g}_{1\beta}\overline{g}_{\beta}^{-1}\overline{g}_{1\beta}^{T})u_{1} = j$$

$$G = G_{11} - \overline{g}_{1\beta}\overline{g}_{\beta}^{-1}\overline{g}_{1\beta}^{T}$$

Przykłady

$$K_1 = \{1, 3, 4, e\}, K_2 = \{R_2\}, K_5 = \{R_5, R_2, R_3, R_1\}, K_6 = \{R_6, R_4, R_3\}$$

$$\begin{bmatrix} R_1 + R_3 + R_4 & 0 & -(R_1 + R_3) & -(R_3 + R_4) \\ 0 & R_2 & -R_2 & 0 \\ -(R_1 + R_3) & -R_2 & R_5 + R_2 + R_3 + R_1 & R_3 \\ -(R_3 + R_4) & 0 & R_3 & R_6 + R_3 + R_4 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \\ i_5 \\ i_6 \end{bmatrix} = \begin{bmatrix} e \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Przyjmujemy $R_k = k \left[\Omega \right]$

$$\begin{bmatrix} 8 & 0 & -4 & -7 \\ 0 & 2 & -2 & 0 \\ -4 & -2 & 11 & 3 \\ -7 & 0 & 3 & 13 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \\ i_5 \\ i_6 \end{bmatrix} = \begin{bmatrix} e \\ 0 \\ 0 \\ 0 \end{bmatrix}; \quad \det r_\beta = 134 \quad r_\beta^{-1} = \frac{1}{134} \begin{bmatrix} 13 & -3 \\ -3 & 11 \end{bmatrix}$$

$$r = r_{\alpha} - r_{\alpha\beta}r_{\beta}^{-1}r_{\alpha\beta}^{T} = \begin{bmatrix} 8 & 0\\ 0 & 2 \end{bmatrix} - \begin{bmatrix} 4 & -7\\ -2 & 0 \end{bmatrix} \frac{1}{134} \begin{bmatrix} 13 & -3\\ -3 & 11 \end{bmatrix} \begin{bmatrix} 4 & -2\\ -7 & 0 \end{bmatrix} = \\ = \begin{bmatrix} 8 & 0\\ 0 & 2 \end{bmatrix} - \frac{1}{134} \begin{bmatrix} 915 & -146\\ -146 & 52 \end{bmatrix} = \frac{1}{134} \begin{bmatrix} 157 & 146\\ 146 & 216 \end{bmatrix} \\ \frac{1}{134} \begin{bmatrix} 157 & 146\\ 146 & 216 \end{bmatrix} \begin{bmatrix} i_1\\ i_2 \end{bmatrix} = \begin{bmatrix} e\\ 0 \end{bmatrix}$$

dwójnik /1,1'/ ze zwartymi końcówkami 2,2'

$$\begin{bmatrix} R_{11} & \bar{r}_{\alpha\beta} \\ \bar{r}_{\alpha\beta}^{T} & \bar{r}_{\beta} \end{bmatrix} = \begin{bmatrix} 8 & 0 & -4 & -7 \\ 0 & 2 & -2 & 0 \\ -4 & -2 & 11 & 3 \\ -7 & 0 & 3 & 13 \end{bmatrix}'$$
$$\bar{r}_{\beta}^{-1} = \frac{1}{216} \begin{bmatrix} 134 & 26 & -6 \\ 26 & 26 & -6 \\ -6 & -6 & 18 \end{bmatrix} = \frac{1}{108} \begin{bmatrix} 67 & 13 & -3 \\ 13 & 13 & -3 \\ -3 & -3 & 9 \end{bmatrix}$$
$$\bar{r}_{\alpha\beta} \bar{r}_{\beta}^{-1} \bar{r}_{\alpha\beta}^{T} = \begin{bmatrix} 0 & 4 & 7 \end{bmatrix} \bar{r}_{\beta}^{-1} \begin{bmatrix} 0 \\ 4 \\ 7 \end{bmatrix} = \frac{488}{108} = \frac{122}{27}$$
$$R = R_{11} - \bar{r}_{\alpha\beta} \bar{r}_{\beta}^{-1} \bar{r}_{\alpha\beta}^{T} = 8 - \frac{122}{27} = \frac{94}{27} = 3,48\Omega$$

Praca kontrolna

Zastępując źródło napięcia *e* przez źródło prądu *j* i stosując metodę napięć konarowych, obliczyć napięcie źródła u_j , a następnie rezystancje dwójnika /1,1'/, przy zwartych końcówkach 2 i 2'.