Instrukcja obsługi ADT4U

MODUŁ POMIAROWY DLA CZUJNIKÓW TENSOMETRYCZNYCH

PPH WObit mgr inż. Witold Ober 61-474 Poznań, ul. Gruszkowa 4 tel.061/8350-620, -800 fax. 061/8350704 e-mail: wobit@wobit.com.pl http://www.wobit.com.pl

Dziękujemy za wybór naszego produktu.

Niniejsza instrukcja ułatwi Państwu prawidłową obsługę i poprawną eksploatację opisywanego urządzenia.

Informacje zawarte w niniejszej instrukcji przygotowane zostały z najwyższą uwagą przez naszych specjalistów i służą jako opis produktu bez ponoszenia jakiejkolwiek odpowiedzialności w rozumieniu prawa handlowego. Na podstawie przedstawionych informacji nie należy wnioskować o określonych cechach lub przydatności produktu do konkretnego zastosowania. Informacje te nie zwalniają użytkownika z obowiązku poddania produktu własnej ocenie i sprawdzenia jego właściwości. Zastrzegamy sobie możliwość zmiany parametrów produktów bez powiadomienia.

- Przed montażem i uruchomieniem prosimy o przeczytanie, zrozumienie niniejszej instrukcji oraz stosowanie się do zawartych w niej zaleceń
- Prosimy o zwrócenie szczególnej uwagi na następujące znaki:

Uwaga: niedostosowanie się może spowodować uszkodzenie urządzenia albo utrudnić posługiwanie się sprzętem lub oprogramowaniem.

Ţ

SPIS TREŚCI

· · · · · · · · · · · · · · · · · · ·	
1. ZASADY BEZPIECZENSTWA I MONTAZU	4
2. WSTĘP	5
2.1 Przeznaczenie	5
2.2 INFORMACJE O CZUJNIKACH TENSOMETRYCZNYCH	7
3. OPIS ZŁĄCZ I KONTROLEK	8
4. PARAMETRY URZĄDZENIA	9
4.1 ZASILANIE	9
4.2 CZUJNIKI WSPÓŁPRACUJĄCE	9
4.2.1 Podłączenie czujnika	9
4.3 SYGNAŁY WYJŚCIOWE	10
5. OPROGRAMOWANIE ADT4U-PC	11
5.1 MINIMALNE WYMAGANIA SPRZETOWO SYSTEMOWE	11
5.2 INSTALACJA OPROGRAMOWANIA ADT4U-PC	11
5.3 URUCHAMIANIE PROGRAMU	12
5.4 Opis programu ADT4U-PC	13
5.4.1 Pasek narzędzi	13
5.4.2 Zapis-odczyt ustawień	
5.4.3 Zakładka Wskaźnik	
5.4.4 Zakładka Wyjscia	14
5.4.5 Zakładka Usławienia	14
5.4.7 Zakładka Rejestracja nomiarów	15
5.4.8 Zakładka Wykres	
5.5 KOMUNIKACJA Z ADT4U, ZMIANA PARAMETRÓW URZĄDZENIA	
6. KONFIGURACJA URZĄDZENIA	16
6.1 Konfigurowanie użytego czujnika tensometrycznego (mostka)	
6.1.1 Parametry konfiguracyjne czujnika	16
6.1.2 Przykłady konfiguracji	17
6.1.3 ZAKRES POMIAROWY	
6.2 Konfiguracja wyjścia napięciowego	
6.3 KONFIGURACJA WYJŚĆ TYPU OC	18
6.4 Wyjście cyfrowe	
7. DANE TECHNICZNE	19
7.1 PARAMETRY ELEKTRYCZNE:	19
7.2 PARAMETRY MECHANICZNE:	20
8. OGÓLNE WARUNKI EKSPLOATACJI	20

1. ZASADY BEZPIECZEŃSTWA I MONTAŻU

ZASADY BEZPIECZEŃSTWA

- Przed rozpoczęciem użytkowania urządzenia należy przeczytać ze zrozumieniem niniejszą instrukcję,
- Przed pierwszym uruchomieniem urządzenia należy upewnić się, że wszystkie przewody zostały podłączone prawidłowo,
- Zapewnić właściwe warunki pracy, zgodne ze specyfikacją urządzenia (napięcie zasilania, temperatura, maksymalny pobór prądu),
- Przed dokonaniem modyfikacji przyłączeń przewodów, należy wyłączyć napięcie zasilania.

ZALECENIA MONTAŻOWE

Urządzenie zostało zaprojektowane tak, aby zapewnić odpowiedni poziom odporności na większość zaburzeń, które mogą wystąpić w środowisku lekko uprzemysłowionym. W środowiskach o poziomie zakłóceń, które nie są znane, zaleca się stosowanie następujących środków zapobiegających ewentualnemu zakłócaniu pracy urządzenia:

- Uziemiać lub zerować metalowe szyny, na których montowane są przyrządy listwowe,
- Nie zasilać urządzenia z tych samych linii, co urządzenia dużej mocy bez odpowiednich filtrów sieciowych,
- Stosować ekranowanie przewodów zasilających, czujnikowych i sygnałowych, przy czym uziemienie dla ekranu powinno być podłączane tylko z jednej strony, jak najbliżej przyrządu,
- Unikać prowadzenia przewodów pomiarowych (sygnałowych) równolegle lub w bliskim sąsiedztwie do przewodów energetycznych i zasilających,
- Unikać bliskości urządzeń generujących duży poziom zakłóceń elektromagnetycznych i/lub impulsowych (obciążeń wysokiej mocy, obciążeń z fazową lub grupową regulacją mocy), a także urządzeń zdalnie sterowanych, mierników elektromagnetycznych itp.

2. WSTĘP

2.1 Przeznaczenie

Moduł ADT4U jest uniwersalnym urządzeniem przeznaczonym do pomiaru sygnałów pochodzących z czterech mostkowych czujników tensometrycznych. Układ pozwala na dokonywanie pomiarów z dokładnością dochodzącą do 100.000 działek, co umożliwia bardzo precyzyjny pomiar działających sił. Moduł ADT4U ma wszechstronne zastosowanie zarówno w przemyśle jak i laboratoriach badawczych, wszędzie tam, gdzie istnieje konieczność zgrubnego lub precyzyjnego pomiaru siły (ciężaru). W zależności od zastosowanego czujnika istnieje możliwość pomiarów małych ciężarów w zakresie gramów jak i dużych obciążeń mierzonych w tonach.

Czujniki tensometryczne potocznie zwane tensometrami są podstawowym elementem każdej wagi elektronicznej, a także urządzeń do pomiaru sił ściskających, rozciągających, naprężeń itp. Spotykane są często w układach automatyki, gdzie zachodzi konieczność dokonywania pomiarów wagowych (m.in. ciężaru zbiorników magazynujących surowce, zbiorników mieszalniczych, w platformach najazdowych). W połączeniu z odpowiednimi urządzeniami pomiarowymi umożliwiają precyzyjny pomiar mas, dozowania surowców itp.

Rys. 1 Przykład możliwości połączeń wskaźnika ADT4U z urządzeniami zewnętrznymi

Rys. 2 Przykład zastosowania ADT4U z wykorzystaniem 4 czujników tensometrycznych do pomiaru ciężaru silosów

Rys. 3 Przykład zastosowania ADT4U z wykorzystaniem 4 czujników tensometrycznych do pomiaru ciężaru pojazdów znajdujących się na platformie najazdowej

Moduł ADT4U współpracuje z programem ADT4U-PC, który umożliwia jego konfigurację, a także odczyt pomiarów i ich wizualizację (przedstawienie pomiarów na wykresie, zapis pomiarów do pliku). Komunikacja z modułem odbywa się przy pomocy łącza USB (dostępna jest także wersja z łączem RS232).

Urządzenie nie wymaga zewnętrznego zasilania (gdy połączone jest z komputerem PC przez łącze USB), może także pracować niezależnie (zewnętrzne zasilanie 12 – 24VDC).

Urządzenie posiada możliwość ustawiania parametru określanego jako "stała czułości" zastosowanego mostka tensometrycznego, co w połączeniu z czujnikami siły serii KMM (dostępne w ofercie firmy WObit) eliminuje konieczność ręcznej kalibracji mostka.

Moduł ADT4U mieści się w niewielkiej obudowie z tworzywa sztucznego przystosowanej do zamocowania na szynie DIN.

ADT4U umożliwia:

- pomiar sygnału z czterech czujników tensometrycznych
- przetwarzanie wielkości mierzonych w oparciu o programowaną, liniową charakterystykę,
- uśrednianie pomiarów,
- zmiany stanów wyjść typu OC w oparciu o ustalone progi,
- przesyłanie danych pomiarowych przy pomocy łącza USB (RS232),
- wizualizacja pomiarów na wykresie, funkcja auto wyzwalania (trigger), akwizycja danych pomiarowych i ich zapis do pliku (przy pomocy programu ADT4U-PC).

2.2 Informacje o czujnikach tensometrycznych

Tensometry w technice pomiarowej pracują najczęściej w układzie tzw. mostka Wheatstone'a, którego schemat pokazany jest poniżej. Mostek ten składa się z czterech gałęzi utworzonych z czterech elementów: zazwyczaj jest to tensometr o oporności R1, tensometr kompensacyjny o oporności R2 oraz dwa oporniki R3 i R4. Tensometr kompensacyjny kompensuje wpływ czynników ubocznych, a szczególnie temperatury i wilgoci. Stosuje się także inne konstrukcje, posiadające większą ilość tensometrów.

Rys. 4 Układ pracy czujnika tensometrycznego w konfiguracji mostka

Przykładowe czujniki tensometryczne oferowane przez firmę WObit:

UWAGA: Rzeczywisty rozmiar czujników może się różnić od rozmiarów zawartych w instrukcji. Pełna oferta na stronie www.wobit.com.pl

3. OPIS ZŁĄCZ I KONTROLEK

Rys. 5 Opis złącz

Nazwa	Opis
USB/RS232	Złącze USB (lub RS232)
Zasilanie	Wejścia zasilania układu, 12 – 24 VDC, min. 100mA
T1 - T4	Wyjścia typu OC (otwarty kolektor)
GND	Masy dla wyjść OC i wyjścia napięciowego
V out	Wyjście napięciowe 0 – 10V, maks. 20mA
PRG	Zworka do aktualizacji oprogramowania. Zworka wyjęta – normalna praca
Złącze czujnika	
V1+V4+	Zasilanie czujnika 14 +
V1V4-	Zasilanie czujnika 14 -
S1+S4+	Wejście sygnału czujnika 14 +
S1S4-	Wejście sygnału czujnika 14 -
Diody sygnalizad	cyjne
PWR	Sygnalizacja zasilania
D1	Stan wyjścia T1
D2	Stan wyjścia T2
D3	Stan wyjścia T3
D4	Stan wyjścia T4 / Sygnalizacja komunikacji z PC

4. PARAMETRY URZĄDZENIA

4.1 Zasilanie

ADT4U może być zasilane napięciem stałym w zakresie 14 – 24V o wydajności prądowej nie mniejszej niż 200mA. Nie zaleca się stosowania zasilaczy impulsowych przy pomiarach z dużą rozdzielczością.

Urządzenie może być zasilane także bezpośrednio z portu USB komputera. Nie dostępne jest jednak wówczas wyjście napięciowe 0...10V.

UWAGA: W przypadku zasilania urządzenia przez USB, nie zalecane jest podłączanie zewnętrznego zasilania.

4.2 Czujniki współpracujące

Urządzenie przeznaczone jest przede wszystkim do współpracy z mostkami tensometrycznymi. Przetworniki te znajdują się w szerokiej ofercie firmy WObit oferowane są czujniki o różnych zakresach mierzonej siły, liniowości od 0,5% do 0,05% zakresu pomiarowego oraz w różnych obudowach, więcej informacji na stronie <u>http://www.wobit.com.pl/produkty/czujniki sily/czujniki sily.htm</u>

UWAGA: Urządzenie współpracuje również z innymi czujnikami, których wyjściowy sygnał napięciowy wynosi maksymalnie ± 39mV.

4.2.1 Podłączenie czujnika

Poniższy rysunek przedstawia przykład podłączenia najpopularniejszych czujników tensometrycznych serii KXXXX, EMSXXX, KMMXX do urządzenia ADT4U.

Rys. 6 Podłączenie czujnika do urządzenia, podłączenie pozostałych czujników wykonuje się analogicznie jak dla czujnika pierwszego

<u>Uwaga: Nie wolno zwierać wyprowadzeń zasilania każdego czujnika np. V1+ V1-,</u> <u>a także zwierać wyjścia np. V1+ do innych wyprowadzeń</u>, gdyż może to spowodować uszkodzenie urządzenia i/lub komputera PC jeśli podłączony jest za pomocą łącza USB do urządzenia.

4.3 Sygnały wyjściowe

T1T4	Wyjścia typu OC (otwarty kolektor – tranzystor LFET), maks. 200mA na wyjście
U out	Wyjście napięciowe 010V, maks. obciążenie 20mA, rozdzielczość 0,01V

Wyjścia typu OC posiadają wspólną masę z zasilaniem urządzenia. Na **Błąd! Nie można odnaleźć źródła odwołania.** pokazana jest wewnętrzna budowa wyjścia oraz przykład wykorzystania wyjścia do sterowania zewnętrznym elementem zasilanym napięciem V+. Maksymalne napięcie V+ to 24V.

Rys. 7 Wyjście typu OC

5. OPROGRAMOWANIE ADT4U-PC

5.1 Minimalne wymagania sprzętowo systemowe

Komputer klasy PC: Procesor: Pentium II 600MHz Pamięć RAM: 64MB System operacyjny: - MS Windows XP lub MS Windows 98 + platforma .NET

Uwaga: Są to minimalne wymagania, nie gwarantujące poprawnej rejestracji pomiarów oraz ich wizualizacji w postaci wykresów. W przypadku systemu MS Windows 98 wymagane może być doinstalowanie platformy .NET, która dołączona jest wraz z oprogramowaniem lub można ją pobrać ze strony www.wobit.com.pl/download/prgramy/DotNetFX.zip

5.2 Instalacja oprogramowania ADT4U-PC

Do konfiguracji pracy urządzenia oraz wizualizacji wyników służy program ADT4U-PC. W przypadku wersji USB urządzenia należy zainstalować także odpowiednie sterowniki.

ADT4U-PC może pracować na słabym komputerze klasy PC z procesorem 300MHz, pamięcią 64MB RAM. Nie gwarantowane są jednak wtedy poprawne czasy przy rejestracji pomiarów oraz wizualizacji pomiarów na wykresie.

Zalecany system operacyjny dla ADT4U-PC to Windows XP. Do instalacji programu w systemie Win98 (lub Windows XP bez Service Pack 2) niezbędna może okazać się platforma .NET (DotNetFix) dołączana wraz z oprogramowaniem ADA4U-PC.

Procedura instalacji sterowników:

- 1. Podłącz urządzenie przewodem USB do komputera
- 2. System Windows powinien wykryć nowe urządzenie USB i poprosić o zainstalowanie sterowników :

Klikamy na przycisk "*Przegladaj*" i wskazujemy katalog o nazwie USB_drivers, a następnie katalog z odpowiednią wersją systemu Windows, klikamy przycisk "*Dalej*>"

Gdy system poprosi o zainstalowanie drugiego sterownika postępujemy analogicznie jak wyżej.

5.3 Uruchamianie programu

Po zainstalowaniu sterowników można uruchomić program ADT4U-PC.

WERSJA USB

Dla wersji z USB, w zakładce "Ustawienia" zaznaczamy sposób komunikacji "USB". Następnie klikamy na pasku narzędzi na "*Komunikacja*", a następnie na "*Połącz*". Wyświetlony zostanie następujący komunikat: "*Połączono z ADT4U ver…*". Jeśli wyświetlony zostanie komunikat: "*Nie znaleziono urządzenia…"*. należy spróbować połączyć się ponownie, upewnić się, że urządzenie zostało poprawnie podłączone do komputera.

WERSJA RS232 (lub wersje urządzenia z oprogramowaniem starszym niż v1.1)

Po uruchomieniu należy przejść do zakładki "*Ustawienia*" i zaznaczyć połączenie RS232, a następnie wybrać odpowiedni port COM.

💋 ADT4-PC rev 1.01		
Program Komunikacja Aktualizacja Info	fo Pomoc	
Pomiary Wyjścia Ustawienia Kalibracja Rej	ejestracja pomiarów Wykres	
- Komunikacja	Konfiguracja pomiarów	- I
O USB O RS232 COM1	Częstotliwośc	
	Filtracja	

Po wybraniu portu klikamy na pasku narzędzi na "*Komunikacja*", a następnie na "*Połącz*". Gdy wybrany został poprawny port COM i urządzenie jest podłączone do komputera wyświetlony zostanie następujący komunikat: "*Połączono z ADT4U ver...*". Jeśli wyświetlony zostanie komunikat : "*Nie znaleziono urządzenia...".* należy spróbować połączyć się ponownie, a jeśli to nie pomoże wybrać inny port COM i upewnić się, że urządzenie zostało poprawnie podłączone do komputera.

5.4 Opis programu ADT4U-PC

5.4.1 Pasek narzędzi

💋 ADT4-PC rev 1.01	
Program Komunikacja Aktualizac	a Info Pomoc
→ Połącz → Info o w →Zakończ → Rozłącz → Aktualiz	ersji acja firmware
Zakończ	Zamknięcie programu
Połącz	Nawiązanie połączenia z urządzeniem
Rozłącz	Rozłączenie połączenia z urządzeniem
Info o wersji	Informacja o wersji ADT4-PC/sterownika
Aktualizacja firmware	Aktualizacja oprogramowania urządzenia
Info	Informacie o programie
Pomoc	Informacje na temat obsługi programu ADT4-PC

5.4.2 Zapis-odczyt ustawień

Wprowadzane zmiany ustawień są na bieżąco aktualizowane w urządzeniu. By były jednak dostępne w urządzeniu po ponownym jego uruchomieniu (odłączeniu od zasilania lub złącza USB) należy je zapisać do pamięci urządzenia wciskając przycisk "*Zapamiętaj*". Przycisk "*Odczytaj*" służy do odczytania aktualnych ustawień urządzenia. Przycisk "*Załaduj ustawienia fabryczne*" Przywraca fabryczne ustawienia urządzenia.

💽 Odczytaj	Ħ	Zapamiętaj	Q	Załaduj ustawienia fabryczne	
Nie wybrano nazwy pli	ku			Wykorzystano 0.0%	:

5.4.3 Zakładka Wskaźnik

- 1) Podgląd zarejestrowanej wartości, minimalnej/maksymalnej
- 2) Wyzerowanie wartości minimalnej/maksymalnej,
- 3) Stany wyjść typu OC,
- 4) Podgląd aktualnej wartości pomiaru,
- 5) Wartość napięcia na wyjściu napięciowym,
- Wartości progów załączających wyjścia OC (T1...T4).

5.4.4 Zakładka Wyjścia

	ADT4-PC rev 1.01			X
	Program Komunikacja	Aktualizacja Info		
	Pomiary Wyjścia Ustaw	ienia Kalibracja Rejest	racja pomiarów Wykres	
1	Stany wyjść T1T4		Wyjście napięciowe	3
	Histereza	0	U out: 50	
2	Nastawa T1	5,00	Wartość dla jakiej na wyjściu	
	Nastawa T2	10,00	napięciowym pojawi się napięcie	
	Nastawa T3	15,00	Poprawna wartość napięcia wyjść dostępna tylko przy zastosowaniu	iowego
	Nastawa T4	20,00	zewnetiznego zasilania urządzeni	a
	Stany vyšíć zaležą od "	Sumaryczna wartość czujn	kow"	
	Ddczytaj	💾 Zapamiętaj	Zakaduj ustawienia fabryczne	
	Nie wybrano nazwy pliku		Wykorzystano 0.0%	

5.4.5 Zakładka Ustawienia

- Wartość histerezy załączania wyjść T1...T4,
- Wartości progów załączania wyjść T1...T4,
- Wartość skalowania wyjścia napięciowego (wartość dla jakiej na wyjściu napięciowym pojawi się napięcie 10V).

- 1) Wybór portu COM lub USB do komunikacji z urządzeniem,
- Konfiguracja wyjścia sumarycznego.
 Aktywacja wejścia wybór ilości czujników, Mnożnik, offset – współczynniki skalujące pomiar,
- 3) Konfiguracja wyświetlania wyniku pomiaru (ilość miejsc po przecinku i jednostki),
- 4) Zakres mostka parametr określający maksymalną siłę dla zastosowanego mostka
- 5) Stała mostka parametr określający stałą "k" mostka,
- 6) Zerowanie wskazań czujnika
- 7) Częstotliwość częstotliwość pomiarów
- Filtracja poziom filtracji uśredniającej pomiary. Im wyższa wartość tym lepsza stabilność pomiarów, ale wolniejsza reakcja na zmiany sygnału (0 – 9),
- Automatyczny offset dla wartości sumarycznej
- 10) Wybór jednostek

5.4.6 Zakładka Kalibracja

Program Komunikacja	Aktualizacja Info
omiary Wyjścia Ustaw	vienia Kalibracia Rejestracja pomiarów Wykres
Autokalibracia	
Autokalibracja umożliwia gdy jest ona nie znana l Wynk autokalibracji (wa do urządzenia po zakoń	i zmierzenie stałki j czujnika tensometycznego w przypadku, ub gdy zaledy nam na dokładnej kalibracji mostka. stość "Stała mostka" jest automałycznie przepisywany czeniu procesu kalibracji.
	Wybór czujnika
Start	© 1 C 2 C 3 C 4
 1) Obciaż czujnik cięż 	arem o znanej masie
2) Podaj wartość obci	ążenia w 1 zatwierdz klawiszem ENTER
3) Wciśnii przycisk kal	ibracii vili KALIBBLU
a, i a a a a a a a a a a a a a a a a a a	
Stała mostka:	
0dczytaj	💾 Zapaniętaj 🖉 Załaduj ustawienia fabryczne

Umożliwia zmierzenie parametru "*Stała mostka*", gdy jest ona nieznana. Funkcja może być używana także do dokładnego skalibrowania mostka.

5.4.7 Zakładka Rejestracja pomiarów

- 1) Okno zarejestrowanych pomiarów,
- 2) Przycisk aktywujący rejestrację,
- Okres akwizycji pomiarów (minimalna wartość 0,01 -> 100 pomiarów / sekundę),
- Włączenie / wyłączenie rejestracji wartości składowych (z poszczególnych czujników),
- 5) Czyści okno zarejestrowanych pomiarów,
- 6) Zapis do pliku w formacie txt,
- 7) Czas auto-zapisu do pliku,
- 8) Zapis do formularza Excel,
- 9) Wskaźnik wykorzystanej pamięci dla rejestrowanych pomiarów.

5.4.8 Zakładka Wykres

- 1) Okno wykresu,
- 2) Przycisk czyszczenia wykresu,
- 3) Przycisk zatrzymania przebiegu,
- 4) Przycisk uruchomienia przebiegu,
- 5) Składowe,
- Funkcja auto wyzwalania przebiegu. Dane zostają wyświetlane na wykresie po przekroczeniu wpisanej wartości.

5.5 Komunikacja z ADT4U, zmiana parametrów urządzenia.

Każda wpisania wartość powinna być zatwierdzona klawiszem ENTER. Urządzenie ADT4U sygnalizuje poprawne odebranie nastawy przez mignięcie diodą oznaczona jako PC/D4.

6. KONFIGURACJA URZĄDZENIA

6.1 Konfigurowanie użytego czujnika tensometrycznego (mostka)

6.1.1 Parametry konfiguracyjne czujnika

ADT4U do poprawnego wskazania wartości z czujnika tensometrycznego wymaga podania dwóch parametrów (dla każdego czujnika):

- Zakres mostka siła nominalna użytego mostka w N (1 999999), podawana zazwyczaj na obudowie czujnika
- Stała mostka czułość użytego mostka w mV/V (0.0001 99), podawana zazwyczaj na obudowie czujnika lub w jego dokumentacji.

Ponadto parametr "**stała mostka**" może być wyznaczony doświadczalnie (w przypadku, gdy nie jest znany, lub podany jest z niewielką dokładnością). Służy do tego zakładka "Kalibracja" w programie ADT4U-PC.

6.1.2 Przykłady konfiguracji

Przykład 1: Czujnik tensometryczny 2mV/V, o zakresie 100N:

Domyślnie moduł ADT4U ustawiony jest do pracy z typowymi mostkami o stałej wzmocnienia = 2mV/V (parametr "*Stała mostka*"). By wynik był poprawnie wyświetlany wymagane jest jedynie wprowadzenie zakresu siły mostka (parametr "*Zakres mostka*"):

- 1) Wchodzimy w zakładkę "Ustawienia",
- 2) W okienku "*Zakres mostka*" wpisujemy wartość 100 dla konfigurowanego czujnika i wciskamy klawisz ENTER,
- By ustawienia były dostępne po ponownym uruchomieniu urządzenia możemy je zapamiętać wciskając przycisk Zapamiętaj.

Przykład 2: Czujnik tensometryczny o stałej podanej przez producenta i zakresie 500N:

Standardowe mostki posiadają stałą 2mV/V z podaną przez producenta dokładnością (liniowość zazwyczaj 0.05% - 0.5%).

Mostki firmy EMSYST (seria KMMXX z oferty WObit) charakteryzują się ściśle dla każdego modelu określoną stałą, podawaną z dokładnością do 4 miejsc po przecinku. Przykładowo mostek tensometryczny typu KMM20-500N z podanym na obudowie numerem seryjnym 6724/06 posiada stałą 0.9906 (wartość odczytana z dokumentacji mostka).

Wprowadzenie stałej mostka:

- 1) Wchodzimy w zakładkę "Ustawienia",
- W okienku "Stała mostka" wpisujemy wartość 0,9906 dla konfigurowanego czujnika i wciskamy klawisz ENTER,
- W okienku "Zakres mostka" wpisujemy wartość 500 dla konfigurowanego czujnika i wciskamy klawisz ENTER,

Przykład 3: Czujnik tensometryczny o zakresie 100N – ręczna kalibracja mostka:

Niszczące obciążenie	
Graniczne obciążenie	W przypadku, gdy nie znamy stałej mostka, lub stała mostka podana jest z niewielka dokładnościa gdy zależy nam na
Użytkowe obciążenie	ręcznym skalibrowaniu czujnika by uzyskać większą dokładność pomiarów należy:
Znamionowe obciążenie	
p o m z i a a k zerowe obciążenie r r o e w s v	 Wchodzimy w zakładkę "Kalibracja", Wybieramy wejście, do którego podłączony jest kalibrowany czujnik, Wciskamy przycisk "<i>Start</i>", Obciążamy czujnik ciężarem wzorcowym , Podajemy wartość użytego ciężaru wzorcowego w iednostkach ustawianych w zakładce "Ustawienia" w
Znamionowe obciążenie	polu " Jednostki ".
Użytkowe obciążenie	6) Wciskamy przycisk <i>"KALIBRUJ</i> ".
Graniczne obciążenie	
Niszczące obciążenie	

6.1.3 Zakres pomiarowy

Określenie definicji zakresu pomiarowego czujnika i dopuszczalnych obciążeń pokazuje rysunek obok. Znamionowym obciążeniem jest wielkość siły wprowadzonej do czujnika w kierunku pomiarowym, która określa górną wartość zakresu pomiarowego. Obciążenie użytkowe to największa siła w kierunku osi pomiarowej czujnika, dla której występuje jednoznaczny związek pomiędzy siłą a sygnałem wyjściowym. Obciążenie graniczne to największa siła w kierunku osi pomiarowej czujnika, którą jest zdolny przyjąć czujnik bez pozostawienia mierzalnego śladu we własnościach w obszarze zakresu pomiarowego. Obciążenie niszczące oznacza siłę przyłożoną w osi czujnika, której przekroczenie może prowadzić do mechanicznego zniszczenia czujnika.

Obciążenie użytkowe może wynosić maksymalnie 150% zakresu, a nieprzekraczalne obciążenie graniczne wynosi 200% danego zakresu. Stała charakterystyczna np. czujnika KMM60 wynosi 1,5mV/V \pm 2%. Błąd czujnika określają następujące wielkości: tolerancja liniowości wynosząca 0,2% zakresu pomiarowego, tolerancja zera 2% zakresu pomiarowego, histereza 0,2% zakresu i błąd pełzania mierzony w czasie 30 minut 0,1%. Współczynnik temperaturowy punktu zerowego i stałej charakterystycznej wynosi 0,1% zakresu/10°C. Wejściowa rezystancja mostka wynosi 3800m \pm 10% a wyjściowa 3500m \pm 5%.

6.2 Konfiguracja wyjścia napięciowego

Na wyjściu napięciowym pojawia się napięcie 0 – 10V, które jest proporcjonalne do określonego zakresu, ustawianego parametrem "U out". Przykładowo dla U = 100 napięcie wyjściowe będzie zmieniać się od 0...10 V, dla wyniku 0...100, wskazywanego przez urządzenie.

6.3 Konfiguracja wyjść typu OC

Urządzenie ADT4U posiada 4 wyjścia tranzystorowe typu otwarty kolektor (OC). Mogą one być załączane i wyłączane poprzez ustawienie odpowiednich wartości progów T1...T4. Przekroczenie danego progu przez mierzoną wartość powoduje załączenie odpowiedniego wyjścia (zwarcie do masy). Załączona zostaje także odpowiednia dioda sygnalizacyjna T1...T4 na panelu urządzenia.

6.4 Wyjście cyfrowe

ADT4U może pracować z dowolną aplikacją użytkownika obsługującą łącze szeregowe, gdyż korzysta z wirtualnego portu COM (dla wersji RS232 z rzeczywistego portu COM) tworzonego przy instalowaniu sterowników. Po stronie aplikacji połączenie jest widziane jako zwykłe połączenie szeregowe.

Parametry transmisji:

Prędkość transmisji: **57600bps** Bity danych: **8** Bity stopu: **1** Parzystość: **brak** Timeout: 3ms

By odczytać aktualną wartość pomiaru należy wysłać następującą ramkę danych (podane wartości w systemie heksadecymalnym):

0x24 0x79 WE_ID 0x00 0x00 0x00 0x00 WE_ID

Wskaźnik odpowie odsyłając następującą ramkę:

0x24	0x79	WE ID	Data1	Data2	Data3	Data4	CS
-		—					

gdzie: Data1...Data4 – 4 kolejne bajty wyniku zapisane jako liczba typu signed long (wartość 4 - bajtowa ze znakiem). Przy czym Data1 – bajt najmłodszy. Otrzymana wartość jest przemnożona przez 1000.

WE_ID = 0x33 – wartość sumaryczna wybranych kanałów WE_ID = 0x34 – wartość kanału 1 WE_ID = 0x36 – wartość kanału 3 WE_ID = 0x37 – wartość kanału 4

CS – suma kontrolna (CS = WE_ID + Data1 + Data2 + Data3 + Data4)

Odczyt można dokonywać z prędkością nie większą niż 80 razy / sekundę. "Timeout" transmisji wynosi 3ms – odstępy między kolejnymi bajtami rozkazu nie mogą być dłuższe niż 3ms. W przeciwnym wypadku urządzenie nie zinterpretuje komendy.

7. DANE TECHNICZNE

7.1 Parametry elektryczne:

Napięcie zasilania	USB: 5V,110mA, Zewnętrzne 14-24 VDC, 110mA
Napięcie zasilania czujnika	+5 VDC
Minimalna rezystancja użytego mostka	200Ω
	0,001% zakresu pomiarowego (dla typowego
Rozdzielczość pomiarów	mostka o stałej 2mV/V)
Częstotliwość pomiarów	10Hz, 80Hz
Błąd nieliniowości	±0.0004% zakresu pomiarowego
Błąd temperaturowy	10nV/C°
Czas wstępnego wygrzewania	5 min
Wyjście napięciowe	0 - 10V,rozdzielczość 0,01V, obciążalność 20mA
	200mA (zalecane korzystanie tylko do
Maksymalny prąd wyjść OC	wysterowania niskonapięciowego albo
	przekaźników o większej obciążalności)

7.2 Parametry mechaniczne:

Stopień ochrony	IP20
Wymiary (wys. x głęb. x szer.)	120 x 101 x 23 mm
Masa	około 100g
Mocowanie	uchwyt na szynę DIN

8. OGÓLNE WARUNKI EKSPLOATACJI

1	Użycie opisywanych urządzeń w systemach o specjalnym znaczeniu (np. medycznych, w pojazdach, itp.) wymaga stosowania dodatkowych zabezpieczeń, przeciwdziałających błędom funkcjonowania.
2	Urządzenia muszą być poprawnie montowane w panelu. Niestosowanie może spowodować porażenie prądem.
3	Nie wolno podłączać urządzeń zewnętrznych jeśli urządzenie jest włączone.
4	Nie należy samodzielnie rozmontowywać i dokonywać przeróbek urządzenia. W razie potrzeby prosimy o kontakt. Nieautoryzowane dokonywanie zmian może grozić porażeniem lub spowodować pożar. Powoduje też utratę gwarancji.
5	Niniejsze urządzenia nie mogą być eksploatowane na wolnym powietrzu. Mogłoby to spowodować porażenie prądem i skrócić czas poprawnego funkcjonowania urządzenia.
6	Połączeń zewnętrznych należy dokonywać przewodami LgY 300/500 H05V-K.
7	Przekraczanie zalecanych parametrów pracy może prowadzić do uszkodzenia urządzenia lub pożaru.
8	Do czyszczenia urządzenia nie wolno stosować środków zawierających wodę lub oleje.
9	W przypadku konieczności przetransportowania urządzenia (np. w celu dokonania naprawy) należy zadbać o staranne zapakowanie, uniemożliwiające powstanie szkód.

